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SUMMARY. An organism is thought to be in a dynamic state of homeostasis when each physio-

logical and behavioral system reaches a delicate balance within the framework of other regulatory

processes. Many biological systems target specific set-point variables and generate circadian pat-

terns. In this paper, we focus on specific measurements representative of two systems, namely

deep body temperature and activity counts. We examine data collected every 30 minutes in mice,

assume there are underlying circadian patterns, and extend the approach presented in Brumback

and Rice (1998) in order to obtain estimates in the presence of correlated data. We then assess

homeostasis using these estimates and their statistical properties.
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1 Introduction

Most biological systems function under complex regulatory processes. Under optimal conditions,

distinct biological systems target specific set-point variables, which allow organisms to with-

stand certain environmental constraints (Moffett, Moffett, and Schuaf 1993). For example, most

homeotherms maintain a deep-body temperature (Tdb ) set-point that approximates
�����

C. In ad-

dition to set-point variables, organisms generate biological oscillations, i.e. periodic changes in

set-point through time (Refinetti and Menaker 1992). It is quite common for these oscillations to

have a 24 hours period. In this case, we refer to them as circadian patterns or circadian rhythms.

An organism is considered to be in a dynamic state of homeostasis when each system reaches

a delicate balance within the framework of other regulatory processes. Since it is impossible to

simultaneously assess all regulatory processes in a time-dependent manner, empirical biologists

often assume that a state of homeostasis is maintained in young adulthood. In the current study, we

employ an alternative strategy focusing on specific biological systems to represent homeostasis.

We illustrate our strategy by examining measurements related to two specific systems that are

known to have set-points and circadian oscillations, namely Tdb and activity counts (ActC). This

methodology, however, can also be applied to measurements, such as heart rate and hormone

levels, from other biological systems. The objectives of this paper are to describe how statistical

methodology can be used to obtain a practical set of biological indicators useful for assessing

homeostasis, and to propose potential research questions motivated by our analysis. To achieve

these objectives, Tdb and ActC were recorded from inbred mice during young adulthood through

senescence, and including imminent death.
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In general, sources of biological variation can be partitioned into genetic and environmental

(i.e. non-genetic) components. Genetic determinants, for example, predispose homeotherms to

regulate internal temperature independent of environmental conditions. Variation in temperature

regulation can also be influenced by changing environmental conditions, such as occurs during

fever. Moreover, natural aging and chronic disease states have been shown to alter an organism’s

ability to regulate Tdb thereby creating a departure from homeostasis. We elected to study inbred

mouse strains to reduce the biological variation attributed to genetic determinants. The AKR/J

strain was chosen because of its relatively short lifespan.

In our analysis, we use a statistical model to evaluate the sources of variation and to quantify

departures in an automated way. If an individual organism regulates a measure representative of

a biological system with a set point
�

and a circadian oscillation described by a function of time

�������
, then a statistical model for observed measurements is

� �����
	 � � ������ ��� �����
with

�������	����� ��� ��� � 	����������������
(1)

with
�

time in days and
� ����

a stochastic process, possibly correlated in time, representing environ-

mental variation and measurement error. If we describe the typical variation of
�

and
������

within

a population of organisms in homeostasis, we should be able to quantify departures from home-

ostasis empirically using model (1). In this paper we describe how one can use the fits of models

like (1) to construct indicators of homeostatic competence for different biological systems. These

indicators can then be combined in many ways to create a specific index that operationally defines

homeostasis. In Section 5 we describe a specific application in which we test the hypothesis that

mortality risk to environmental stress is proportional to the degree of homeostatic loss.

Various techniques have been suggested to estimate circadian patterns from data; for example,
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Greenhouse, Kass, and Tsay (1987) propose fitting a harmonic model, while Wang and Brown

(1996) propose a method based on amplitude and phase modulated spline functions. Various ap-

proaches have been suggested for the analysis of data observed from different individuals in a

population and believed to follow models similar to (1). Wang (1998), Zhang et. al. (1998) and

Zhang, Lin, and Sowers (2000) present approaches based on mixed models. In this paper we use an

approach, presented by Brumback and Rice (1998), that permits us to model a smooth population

circadian pattern from which each individual deviates in a “smooth” way.

2 Data Exploration

(Tdb ) and (ActC) were measured in 17 mice housed in individual cages. The measurements were

acquired at 30-minute intervals starting two weeks after the implantation of a radiotelemeter and

ending with death. For practical reasons related to the life-time of the battery-operated radioteleme-

ter, measurements were usually taken only for 48 hours during weekends. In the time series plots

shown in Figures 1a and 1b for mouse 4 note that as death approaches, daily mean levels of Tdb

and ActC decrease from what is typical of early adulthood. The regularity of circadian oscillations

for both variables was progressively lost late in life.

The first step in our analysis was to describe the set-point and circadian oscillations in a popula-

tion of healthy mice. We restricted this portion of the analysis to data obtained during consecutive

weekends when the mice were relatively young adults, had recuperated from surgery, and exhibited

normal behavior by visual inspection. We wanted to maximize the number of days and number

of mice included, but some mice had few consecutive weekends as defined by these criteria. We
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found a good balance by considering 6 consecutive weekends for which 12 out of 17 mice met the

criteria. The other 5 were excluded from this stage of the data analysis. Data from the remaining

mice, numbered with
� 	 � ����������� �

, are hereafter referred to as control data. Figures 1c and 1d

show the control data for Tdb and transformed ActC (The transformation � 	 �
ActC

� � �������
was

selected from the Box-Cox family), plotted against time. These plots show that all mice follow

a similar circadian pattern which can be accounted for by a population
�������

in a model like (1).

It is not clear from the plots, however, whether or not the data suggest different
������

and
�

s for

different mice. We now describe why for our study we consider differnt
�������

and
�

for each

mice. The analysis of variance (ANOVA) results in Table 1 show that the population circadian

pattern effect
�

and mouse effect
�

have the largest mean squares (MS). The MS of the day effect

and all interactions were relatively smaller than the
�

and
�

effects and of similar size. A useful

statistical model may only need to account for
�

and
�

. However, the mouse/circadian pattern

interaction seems to be important from a physiological perspective. Figure 2 plots the circadian

pattern/day interactions ( �
�

), and circadian pattern/mouse interactions (
� �

). This type of plot is

helpful in cases showing apparent “systematic” differences that are too small to substantially affect

the MS. For example, if the interactions are viewed as functions of time,
� �

appears less steep

and less noisy than �
�

. This provides some empirical evidence of systematic differences between

the circadian patterns among mice in ActC and Tdb. Another possible interpretation is that
�

and

�
are the only important effects and that the errors for measurements taken from the same mouse

are autocorrelated. However, as mentioned, from a physiological point-of-view, it makes sense to

include the
� � � �

interaction term. We therefore choose the following statistical model for our
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data:

� ����� 	 � � � � � � � � � � ��� � � ����� � � 	 � ����������� �	� 	�� ����������
�� � 	 � ���������� �
(2)

with
� 	�� �

the number of mice,

 	 � �

the number of days,
� 	����

the number of observations

taken each day, and
� ����� considered random errors. To explore the correlation structure of the errors

we examine the residuals obtained from fitting model (2) using least squares (LS). In Figures 2e and

2f we see sample correlations corr
���� ����� ���� ����� � plotted against � ����� � . For Tdb a positive correlation

for smaller values of � ����� � is evident. This may be attributed to the time it takes heat to dissipate.

For simplicity, we model the errors in model (2) as an AR(1) for Tdb . With ActC we do not expect

a positive correlation, since over-activity is likely to be associated with fatigue and followed soon

after by relative inactivity. The correlation plot for ActC shows less than conclusive evidence of

a negative correlation at lag 1 (30 minutes later). Thus we assume the errors are independent

and identically distributed (IID). Histograms and quantile-quantile plots (not shown) support our

approximating the distribution of errors with a Gaussian model.

3 Statistical Methods

Most biologists agree that mice are homeostatically robust in young adulthood. Thus, we used

the control data to characterize homeostatic status. The parameter estimates, obtained from fitting

model (2) to the control data, and their statistical variation can be considered “typical” for mice

in robust homeostasis. We may consider the fit as a “template” or “measuring rod”. However,

model (2) contains two terms,
� � and

� � � � ��� , that may be considered to be samples from smooth

functions of time. Model (2) does not take advantage of this a priori belief. The techniques
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described in Greenhouse et. al. (1987) and Wang and Brown (1996) take this into account. The

latter is used to produce the estimates shown as unbroken lines in Figures 3a and 3b and is further

discussed in Section 5. Wang (1998) and Zhang et. al. (1998) and Zhang et. al. (2000) present

approaches for models with smooth
� � s and interaction terms

� � � � ��� based on mixed models.

The method presented in Brumback and Rice (1998) permits consideration of
� � and

� � � � � �

as twice-differentiable smooth functions of time. This is a natural assumption for our example

since it can be interpreted as a smooth circadian pattern
� � for the population from which each

healthy mouse deviates in a smooth way. Brumback and Rice’s approach requires the errors to be

independent. For Tdb we demonstrate how their results can be easily extended to the correlated

data case.

If we consider one day of data for one mouse, then model (2) reduces to the “non-parametric”

regression problem � � 	 � �� � � � � � , where we have observations at times
� � 	 ��� � � � 	�������������

with � ���� a smooth curve and � 	 � � � ��������� ��� ���	� multivariate normal 
 ������ ��� ������� � � . For

ActC,
� � 	�� �

and for Tdb , � � ��� � � 	�� � �"! � �
. We assume � ����� is in the Sobolev space of functions

with support 
 � ��� � whose second derivatives are square integrable. Under this assumption, the

function
� � ����� minimizing the weighted residual sum of squares plus a roughness penalty,

�$# �&% � � � ! �� �$# �&% � �('*) �+ � � � � ����� � �-, ��� (3)

with
# 	 � � � ��������� � � �.� and

% 	 � � ��� � ����������� � �� � � � � is a natural cubic spline. Because we are

interested in circadian patterns, it is natural to assume that � ����� is a periodic function. As pointed

out by Wahba (1990), for even
�

, � ����� is well approximated by

� ����� 	�/ + � � �0� ! �1 2�3
�
/ 254 �76�8:9 � �<;>= ��� � � �0� ! �1 2�3

�&?
2<4

�79A@CB � �5;D= ��� � / � �0� 6�8E9 �F; � ����� (4)
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Furthermore, because the data are equally spaced in time, integration and simple trigonometric

properties yield the following simple representation of the penalty term:

'*) �+ � � � � ����� � � , � 	 ' ���� � �0� ! �1 2�3
�
��/ 2 � ?

2
� � � �<;D= � � � �

� / � �0� �F;�� � �����	 �
(5)

Notice that the harmonic models used by Greenhouse, et. al. (1987) are equivalent to (4) with the

constraint
/ 2 	��

, ?
2
	 �

for
=�
 �

.

It can be shown that the fitted smoothing spline evaluated at the design points,
� % 	 � � � �� � ������������� � �� � � � � ,

equals the BLUP solution to a mixed effects model

# 	 / +� ����� � � (6)

where
/ + is a fixed effect and

�
is a vector of random effects corresponding to a known de-

sign matrix
�

. Results (4) and (5) permit us to write
�

in a form that provides not only sim-

plicity in the presentation of the results but computational advantages. The mixed-effect model

is specified by:
�

a matrix with entries � � ��� 2 ! ��� � 	
4
� � � �5;D= � � 6"8E9 � �5;D= ��� � �

, � � �5� 2 � � 	4
� � � �<;>= � � 9A@CB � �<;D= ��� � ��� =�	 � ���������� � � � �

,
� � �0� ! ��� � 	 � � � 4 �<; � � � 6�8E9��F; � �

;
� � ���  ��� � ��� � �E' �.� � � ;

and � � ���  � � ��� �"� � � independent of
�

. The calculations for obtaining
�

are the same as those

appearing in Brumback and Rice (1998)

The BLUP solutions
� / + and

��
are defined, for example, in Robinson (1991) and under our

assumption that the random components are normally distributed, they are the maximum likelihood

(ML) estimates of
/ + and

�
. In the penalized regression setting, cross-validation is the most popular

method for choosing
'

. However, in the context of mixed-effects models, it is natural to use

restricted ML (REML). See Wang (1998) for insightful and more extensive discussions of these

issues.
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For observations from a nested sample of curves, the basic idea is to consider an additive model

in which the observations are outcomes of

� ����� 	 � ��� � � � �� � � � � � ��� � � � � ����� � � 	 � ��������� � � � 	 ������������
 � � 	 � ����������
(7)

with � � ����� and � � ���� representing smooth population circadian patterns and smooth individual

mouse departures from the population circadian pattern, respectively. Notice that we are fitting a

different mean for each mouse
�

and day
�
. However, we are not considering

� ��� to be a day/mouse

interaction because we expect
� ��� 	 � � for all

�
. Later in this section we describe why we fit a

model where
� ��� is permitted to vary with

�
.

Brumback and Rice (1998), note that the appropriate analog of (3) is not a-priori clear and,

borrow from the “long history of the ANOVA with mixed-effects models” to suggest an appropriate

criterion. In this section we use a simple extension of their result to arrive at a useful solution to

our problem.

To build a mixed-effect model from (7) we define

# 	���� � � � � � � � � � � � � (8)

with
# 	 � � � � � ��������� ����� � ��� ; � 	 � ���
	 � � ,

� � 	 � ��	 � ��	 �
, and

� � 	 � ���
	 �
;
� 	

� � ��� � ��������� � � � � � � ; � � � � �  ��� � ��� � �E' � � � � ! ��� ; � � � ���  ��� � �F� � �E' � � � �� � ! ���0� ; � � � �� � � �A� � � �
with

��	 � ����	 � � ; with
� � , independent of

� � independent of � .

Using Theorem 2 in Brumback and Rice (1998), we can show that the BLUP solution summa-

rized by
�# 	�� �� � � � � � � � � � �� � to the nested mixed-effect model (8) is equivalent to fitted curves

given by a corresponding penalized weighted regression. See the Appendix for details.
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4 Assessing homeostasis

In this section, we explain how the estimates
�� ��� , � � � ����� , and

� � � ����� , � 	 � �����������
,
��	 � ����������


obtained from fitting (7) to the control data are used to assess homeostasis. In Figures 3c and

3d we present the resulting
� � � ����� � � � � ������ � 	 � �����������

for ActC and Tdb respectively, with
� � � ����

represented as a bolded line. The model fits the data well. Notice in particular that
�� � �"! � �

is close

to the sample correlations in Figure 2f.

Assume that for a given mice
�

used to obtain the control data we also have data from one

other day; we want to determine if this mouse is in homeostasis on that day. Let ������ � � 	�������������

denote these data. In Section 2 we noted how, as death approaches, daily mean levels decrease.

The control data can be used to obtain the estimates
�� ��� and can be used as a “measuring rod” to

quantify how far
� ! ��� �

�
3
� ������ is from the homeostatic set-point. We also noted that the regularity

of circadian oscillations are progressively lost late in life. We now describe how to quantify a loss

of circadian pattern regulation. We model the new data as

� ���� 	 � �� � � �� ��� � � ��� ���� � � 	 � ����������
(9)

with � �� ��� � � , and
� ���� satisfying the assumptions of model (7). Because we only have one day of

data the population and individual departure curves are not identifiable; thus we combine the two

components into � �� ��� � � . For the procedure we propose below, we do not need to separate the two

components. We therefore represent model (9) as (6) with
� � ���� ��� � �F�D� �E' � � � � �E' � �.� � � ; and

� � ���� � � ��� � � � � for ActC and � � ���  ��� �"� � �F� � � for Tdb . Using the variance component

estimates obtained for the control data, the estimates
�� �� and

� ���� ����� are then easily obtained in the

form of BLUP solutions. If a mouse is still homeostatically competent then we expect ���� ����� 	
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� � ����� � � � ���� . We can think of this as the “null hypothesis” of homeostatic competence as related to

circadian pattern regulation. As a test statistic, we suggest using
, � 	 � �+ � � � �� ���� � � � � ����� � � � � ����� � � , � .

We construct a null distribution for
, � from the control data using a bootstrap procedure. For the

correlated data, we use the procedure described in Efron and Tibshirani (1993, p. 92–99).

Because five mice were not used to establish normal performance,
, � cannot be constructed for

them. However, because we believe there is a strong genetic component to circadian regulation it

makes sense to suggest that each individual will mimic the population average. In Figures 3e and

3f, we compare the estimated population averages
� � � for ActC and Tdb respectively for AKR and

B6 (an alternative inbred strain). We surround the population averages with bootstrap estimates

obtained using the sampling mechanism described by Brumback and Rice (1998). These figures

suggest that, for these five mice, a useful test statistic compares � �� ���� to the population curve� � ����� -namely � � 	 � �+ � � � �� ����� � � � � ���� � � , � . Again, we use a bootstrap procedure to obtain a null

distribution for � � . Notice in Figures 4c and 4d that the shown quantiles for the null distribution

for the
, � s and � � s are quite close. We may simplify the diagnostic tool by only considering � � .

In Figure 4f we see that for mouse 3 the values of
, � and � � are close and would yield equivalent

results in practice. Similarly, we compare
�� �� of mice not used in the control data to the

�� ��� s.

We fit (9) to the data from all 17 mice. Figures 4a and 4b show
�� � against weeks left until

death for ActC and Tdb , respectively, for three mice: one of the mice (3) used for the control

data and two of the mice (14 and 15) not used. We compare
�� � to the estimates

�� ��� obtained

by dropping the
� � 	 � ��� constraint as opposed to the

�� � obtained by keeping it, since
�� � and

�� ��� both represent day averages and thus provide a fair comparison. The horizontal lines shown

represent the 0.05 and 0.95 quantiles of the estimates,
�� ��� . One possible way of establishing
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normal homeostasis for the adult is to specify that
�� � is within appropriately chosen quantiles of

the
�� ��� s.

Figures 4c and 4d show the distances
, � for mouse 3 and � � for 14 and 15 plotted against

weeks left until death. The circadian pattern function starts to deviate from the “control” curve as

death approaches. This measure may also be considered an indicator of homeostatic competence.

Moreover, these deviations, expressed as distances, should also be within appropriately chosen

quantiles of the null distribution.

5 Discussion and Extensions

Based on regulatory processes common to many mammalian species, we have described an auto-

mated statistical procedure useful for assembling a set of indicators of homeostasis. Specifically,

four different indicators related to the set-point and circadian oscillation for Tdb and ActC have

been defined and are shown in Figures 4a-4d. These figures include only 3 mice. The other 14

mice had results similar to mice 3 and 15 but were not included for graphical clarity.

In Figure 4a, mouse 14 appears “over-active” from the outset whereas its Tdb (Figure 4b) ap-

pears “normal” for about the first seven weeks of observations. During this period, one might infer

that temperature regulation was similar to other AKR mice in the face of over-activity. Also in Fig-

ure 4b, mouse 15 is outside the dotted lines when it still has 10 weeks to live, yet it is mostly within

the dotted line limits in Figures 4a,4b, and 4d for those same weeks. Collectively, the data suggest

that when death is imminent, all indicators leave the defined normal boundaries, suggesting a loss

of all regulatory processes. Thus, it is useful to consider multiple indicators if possible. Depend-
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ing on specific goals, these can be combined in a number of ways to assess/evaluate homeostatic

capacity.

For example, the goal of a current project is to test the hypothesis that mortality risk to en-

vironmental stress increases with age and is proportional to the degree of homeostatic loss. We

propose testing this hypothesis by comparing responses of mice at different levels of homeostatic

competence when exposed to specific levels of an air pollutant. We may need to decide on a spe-

cific day whether a mouse is in homeostasis or not. If we look at days when the mice (all 17) had

about 14 weeks to live (probably still healthy), then the indicator presented in Figure 4a suggests

loss of homeostatic competence 38% of the time. The indicators presented in Figures 4b, 4c, and

4d suggest loss of homeostatic competence 54%, 46%, and 38% of the time, respectively. In our

current projects we are using an index that requires all 4 measures to be outside their limits. This

index makes the aformentioned incorrect assessment 8% of the time. This index has given us a

useful operational definition of homeostasis.

The analysis presented in this paper motivates many potential research questions. First, There

may be other useful ways to combine the indicators to form indices of homeostatic competence.

For example, we may gain power by considering the values of indicators for multiple consecutive

days. The use of ROC curves for this is the subject of current research. Second, notice that the

indicators are qualitative measures. We may be able to compare the health of two populations by

comparing some function of these indicators. In Figure 4e we show distance measurements ob-

tained for Tdb plotted against age. The curve shown with a solid line is a loess smooth of this data.

We superimpose the empirical survival curve of the 17 AKR mice. Further research will explore

survival regression models with these indicators as possible covariates. We feel that
�

must be

13



large for such a regression to yield interesting results and we are currently collecting more data.

Third, we may be able to make the comparison of set-points more precise by considering the
�

term to be a random effect. As more data become available, we may find a useful approxima-

tion that would yield an appropriate assumption for the distribution of
�

modeled as a random

effect. Finally, it would be useful to extend our methods to cases where the errors are not normally

distributed.

A number of approaches might be taken to assess homeostasis by estimating circadian curves.

We applied the procedure of Wang and Brown (1996) and found that
�� , the circadian pattern

amplitude estimate, provided a useful diagnostic since it becomes close to 0 as death approaches.

The main reason for using the approach of Brumback and Rice (1998) is its greater flexibility, as

demonstrated by Figures 3a and 3b. Wang and Brown’s model forces the shape of the circadian

pattern to remain the same for all mice. The code for all the programs used in this paper can be

found at http://biosun01.biostat.jhsph.edu/
�
ririzarr/software.html.

Appendix

Calculations for EM algorithm. The penalized weighted regression fits
� ��� and the collection of smooth

curves � ������� and � � �����
	������	�������	�� by minimizing :
��
�
3
�

��
�
3
�
��� ����� � ������� � ���� � ��� ! �� ��� ����� � ������� � ���� � �"! �$# �+&% � � �� �����(' �*) �+�"! � ��

�
3
�
# �+&% � � �� �����(' �*) �

with � ��� ,��- ��� � 	������.	�- ��� � � � , � �/ % � �0��� � �
	������.	 � �0��� � �(' � and � �  % � � ��� � �
	�������	 � � ��� � �(' � 	��1,��	������.	�� . To

obtain estimates of our curves, the variance components must be estimated. Writing
�

as a function of 2 ,

we have var ���3�465��87*�9:�<; �.= ! � �(> � > � � �?�<; �.= ! � �(> � > � � �@; � � � 2 � where 7":�<; � 	 2 	�; �.= ! � 	�; �.= ! � � .
We use REML and the EM algorithm of Dempster, Laird, and Rubin (1977).

14



For the ActC we assume IID errors, so 2 is 0 and we can proceed exactly as in Brumback and Rice

(1998). To perform REML, we select a matrix
� �

with the highest rank possible such that
� ��� �� and

� �
has full row rank, then consider the transformation

� � � which does not depend on � . We then define

the complete data set
� � � 	�� � 	�� � 	 and � and use the complete data sufficient statistics for the variance

components to define the E-step and M-step.

For Tdb , we assume the errors are a Gaussian AR(1) process and must alter the procedure to permit

estimation 2 . For computational convenience we will assume that measurements form different days are

independent, although measurements for consecutive days for the same mice should be correlated (using

this assumption produces negligible differences in the results but great improvements in computation time).

If we define � +
	  � ��� 	 � 	� �� 	�������	�� (the
� 	 ’s defined in the Appendix), � � �� � � � � , and � � �� � � � � ,

then letting 5 � denote var � � � -�� , E-step expectations of the � s conditional on the actual data
� � � are

computed as

E ��� +
	�� � � �3�  tr �<; � � 	 � � ; � � 	 � � 5 ! �� � � � �+� ; � � � � 5 ! �� � � � � 	 � � 5 ! �� � � � 	� �� 	�������	�� (10)

E ��� 	�� � � �3�  tr � �<; � = ! 	 ����� � �<; � = ! 	 � � > 	 � 5 ! �� � � > �	�� � �<; � = ! 	 � � � � � 5 ! �� � � > 	 > �	 � 5 ! �� � � � 	� ?��	�� �
The M-step, ML solution for

�
is obtained by solving the cubic equation

� � � � 
 ���� + � � � +�� �.� � � � � � � � 
 � � + � � � � � � � + � � � +�� � � 
 � �
��� +�+ � � +�� � � � � � � + � 	 � �
(11)

For the remaining parameters, the ML solutions are
��D� 	 � ! � � � � � �� ��� ! ���� +�+ � �	�� � + � � �� � � + � � � � +�� � ,

� � � � � � ' � �
	 � � � ��� � � �
, and

� � � � � � ' � �
	 � � � � � � � ���
.

The part of the log-likelihood related to parameters
�

and
�D�

is
� � � ��� � �A� � � � � �! C8#" � � �

� 
 ��� � � �$ 8%" � � � � � � � � ! �'&
with

& 	 � ��
3
� �

��
3
� � � � � � � � ! ��� �

�
3 � � � � � � � � � � � � � � � �"! � � � � � �� � � � � � .

Taking derivatives, we find that the above is minimized when
�D� 	 � ! � &

, which is equivalent to

the expression given in Section 3, and by the
�

that minimizes (11). By defining ( � as a diagonal

15



matrix with 1s in each row except the first, ( � as the matrix having � ( �"� ��� 	 �
for

� � � 	 �
and

0 otherwise, ( � the diagonal matrix with 1s in each row except the last and ( � a 0 matrix except

for � ( � � � � 	��
, we can then compute E � � � � �F�>� �A� � � � � � � # � to obtain (10).

Computational issues. Notice that for our example the matrix � �
is of dimension � � � ��� � � � � .

This makes the task of inverting � �
difficult if not impossible for most desktop computers. How-

ever, one can take advantage of the model’s structure to reduce the problem to the inversion of a few

matrices of size
� � � � �

, reducing computation time to fractions of a second on a Sun Ultra 10. No-

tice that
�

is block diagonal and that we can choose
�

to be block diagonal. By not imposing the

� � 	 � ��� constraint, constructing
�

is simple because
��� � 	�� ��� 	 � � � � � . We denote

� � and
� �

as the respective diagonal entries. Using exercises 2.7 and 2.8 from Rao (1973, p. 33) we can show

that
� ! �� 	 � ��� 	 ��� ��� � � � � 	 � � � � � 	 � � �
	 � � � ��� � � ��� 	 	 with

� 	 ��� �� � ��� ��� � � �
,

� 	 ( ���
,
	 	 � ��� � ��� ��� � � �

where ( 	 � � � � � � � � � ! � , � 	 � � � � ,
� 	 (�� ,

� 	 
 � � � , � 	 � � � � ' � � � � � ��� ! � , � 	 
 � � � � ' � � � � �.� � � � � � � � ' � � � � �.� � ! � � � ! � ,
� 	 � � ��� ,

� 	 � � � � ,
 	 � � �

. Notice that here all that is needed are a few inversion

of
� � � � ��� � � � � �

matrices.
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Table 1: ANOVA tables for ActC and Tdb . Time of the day (denoted the circadian pattern effect),

mouse, and day are considered main effects.

Figures:

1. a) Tdb measurements time series plots for each weekend for mouse 4. b) Activity count

time series plots for each weekend for mouse 4. The vertical lines separate the weekends. c)

Tdb control data measurements. Different symbols represent different mice and the line is

the average over mice/day for each time. d) Transformed ActC control data measurements.

Different symbols represent different mice and the line is the average over mice/day for each

time.

2. a) Mouse/Circadian pattern interaction for ActC with different line types for the differ-

ent mice. The square root of the mean square and a roughness measure �
	 � � � � �

� � ! � �.� � � � � � ���� � � are shown in the titles. The bold line is circadian pattern effect. b)

Day/Circadian pattern interaction for activity counts with different line types for different

days. The square root of the mean square and a roughness measure �
� � � � � � �C! � � � � � � � � �

�� �.� are shown in the titles. The bold line is the circadian pattern effect. c) As a) for Tdb . d)

As b) for Tdb . e) Sample autocorrelation plots for activity counts. f) Sample autocorrelation

plots for Tdb measurements with the estimate
�� lag shown.

3. a) Dotted lines represent activity circadian pattern estimate for mouse 14 using Rice and

Brumback (1998). Solid line is estimate obtained using Wang and Brown (1996). b) As a)

for mouse 9. c) ActC circadian pattern estimates obtained for 12 mice in control data. Bold

line is the population curve. d) As c) but for Tdb . e) Circadian pattern estimates for two



strains, ActC for AKR and B6 strains with 25 bootstrap curves. f) As e) for Tdb .

4. a) ActC mean levels for mice 3, 14, and 15, with horizontal lines representing 0.05 and 0.95

quantiles of control data estimates. Bold line is population average b) As a) for Tdb . c)

Distance plots for ActC for mice 3, 14, and 15. Horizontal lines represent 0.05 and 0.95

quantiles of null distribution for these distances, solid lines are for
, � dotted are for � � . d)

as c) for Tdb . e) Value of body temperature circadian indicator plotted against mouse age

in days. The solid line curve is a loess smooth. The dotted line is the empirical survival

distribution of the 17 mice. e) Comparison of
, � , dotted lines, and � � , solid lines for mouse

3.



Activity Counts Body Temperature

Effect df MS Effect df MS

Circadian Pattern 47 32 Circadian Pattern 47 74

Mouse 11 16 Mouse 11 16.6

Mouse/Day 121 0.83 Day 11 0.63

Mouse/Circadian Pattern 517 0.75 Mouse/Day 121 0.58

Day 11 0.5 Mouse/Circadian Pattern 517 0.46

Mouse/Day/Circadian pattern 5687 0.41 Day/Circadian Pattern 517 0.15

Day/Circadian Pattern 517 0.38 Mouse/Day/Circadian pattern 5687 0.130

Total 6912 0.69 Total 6912 0.7
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a) Activity Mf: MS=0.75 D=0.0039
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b) Activity Df: MS=0.38 D=0.0044
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c) BT Mf: MS=0.46 D=0.0016
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d) BT Df: MS=0.15 D=0.0049
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e) Sample correlation for Activity

lag
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f) Sample correlation for BT

lag
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a) Coparison, Mouse 6
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a) Activity
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c) Distance
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e) Body temp circadian indicador vs. Age
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