Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?)

Form a test statistic for which large values indicate a departure from the hypothesis.

Compare the observed value of the statistic to its distribution under the null hypothesis.
Paired t-test

Pairs \((X_1, Y_1), \ldots, (X_n, Y_n)\) independent.

\[X_i \sim \text{Normal}(\mu_A, \sigma_A) \quad Y_i \sim \text{Normal}(\mu_B, \sigma_B) \]

Test \(H_0 : \mu_A = \mu_B\) vs \(H_a : \mu_A \neq \mu_B\)

Paired t-test: \(D_i = Y_i - X_i\)
\[\rightarrow D_1, \ldots, D_n \sim \text{iid Normal}(\mu_B - \mu_A, \sigma_D) \]

Sample mean \(\bar{D}\); sample SD \(s_D\)
\[\rightarrow T = \frac{\bar{D}}{s_D/\sqrt{n}} \]

Compare to a t distribution with \(n - 1\) d.f.

Example

\(
\begin{array}{c}
\begin{array}{c}
X \\
Y
\end{array}
\end{array}
\)

\(
\begin{array}{c}
\begin{array}{c}
D \\
X
\end{array}
\end{array}
\)

\[\bar{d} = 14.7 \quad s_D = 19.6 \quad n = 11 \]

\[T = 2.50 \quad P = 2 \times (1 - pt(2.50, 10)) = 0.031 \]
Wilcoxon signed rank test

A “nonparametric” test.

Rank the differences according to their absolute values.

\[R = \text{sum of ranks of positive (or negative) values.} \]

<table>
<thead>
<tr>
<th>D</th>
<th>28.6</th>
<th>−5.3</th>
<th>13.5</th>
<th>−12.9</th>
<th>37.3</th>
<th>25.0</th>
<th>5.1</th>
<th>34.6</th>
<th>−12.1</th>
<th>9.0</th>
<th>39.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

\[R = 2 + 4 + 5 = 11 \]

Compare this to the distribution of \(R \) when each rank has an equal chance of being positive or negative.

In R: \[\text{wilcox.test(d) } \rightarrow \text{ P = 0.054} \]

Permutation test

\((X_1, Y_1), \ldots, (X_n, Y_n) \rightarrow T_{\text{obs}}\)

- Randomly flip the pairs. (For each pair, toss a fair coin. If heads, switch \(X \) and \(Y \); if tails, do not switch.)
- Compare the observed \(T \) statistic to the distribution of the \(T \)-statistic when the pairs are flipped at random.
- If the observed statistic is extreme relative to this permutation/randomization distribution, then reject the null hypothesis (that the \(X \)'s and \(Y \)'s have the same distribution).

Actual data:

\[(117.3, 145.9) (100.1, 94.8) (94.5, 108.0) (135.5, 122.6) (92.9, 130.2) (118.9, 143.9) \]

\[(144.8, 149.9) (103.9, 138.5) (103.8, 91.7) (153.6, 162.6) (163.1, 202.5) \rightarrow T_{\text{obs}} = 2.50 \]

Example shuffled data:

\[(117.3, 145.9) (94.8, 100.1) (108.0, 94.5) (135.5, 122.6) (130.2, 92.9) (118.9, 143.9) \]

\[(144.8, 149.9) (138.5, 103.9) (103.8, 91.7) (162.6, 153.6) (163.1, 202.5) \rightarrow T^* = 0.19 \]
Permutation distribution

P-value = Pr(|T^*| ≥ |T_{obs}|)

→ Small n: Look at all 2^n possible flips.
→ Large n: Look at a sample (w/ repl) of 1000 such flips.

Example data:
All 2^{11} permutations: P = 0.037; sample of 1000: P = 0.040.

Paired comparisons

At least three choices:
- Paired t-test.
- Signed rank test.
- Permutation test with the t-statistic.

Which to use?
- Paired t-test depends on the normality assumption.
- Signed rank test ignores some information.
- Permutation test is recommended.

The fact that the permutation distribution of the t-statistic is generally well-approximated by a t distribution recommends the ordinary t-test. But if you can estimate the permutation distribution, do it.
2-sample t-test

\(X_1, \ldots, X_n \) iid Normal(\(\mu_A, \sigma \)) \hspace{1cm} \(Y_1, \ldots, Y_m \) iid Normal(\(\mu_B, \sigma \))

Test \(H_0 : \mu_A = \mu_B \) vs \(H_a : \mu_A \neq \mu_B \)

Test statistic: \(T = \frac{\bar{X} - \bar{Y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \) \hspace{1cm} \text{where} \hspace{1cm} s_p = \sqrt{\frac{s_A^2 (n-1) + s_B^2 (m-1)}{n+m-2}}

\(\rightarrow \) Compare to the t distribution with \(n + m - 2 \) d.f.

Example

\[
\begin{align*}
\bar{x} &= 47.5 \hspace{1cm} s_A = 10.5 \hspace{1cm} n = 6 \\
\bar{y} &= 74.3 \hspace{1cm} s_B = 20.6 \hspace{1cm} m = 9 \\
s_p &= 17.4 \hspace{1cm} T = -2.93
\end{align*}
\]

\(\rightarrow \) \(P = 2 \times \text{pt} (-2.93, 6+9-2) = 0.011. \)
Wilcoxon rank-sum test

Rank the X's and Y's from smallest to largest (1, 2, …, n+m)

R = sum of ranks for X's.

(Also known as the Mann-Whitney Test)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>38.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>43.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>46.8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>49.7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>50.0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>51.9</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>57.1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>61.2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>74.1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>75.1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>84.5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>90.0</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>95.1</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>101.5</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

\[R = 1 + 2 + 3 + 6 + 8 + 9 = 29 \]

P-value = 0.026

→ use `wilcox.test()`

Note: The distribution of R (given that X's and Y's have the same dist'n) is calculated numerically.

Permutation test

X or Y | group
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_1)</td>
<td>1</td>
</tr>
<tr>
<td>(X_2)</td>
<td>1</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>1</td>
</tr>
<tr>
<td>(X_n)</td>
<td>1</td>
</tr>
<tr>
<td>(Y_1)</td>
<td>2</td>
</tr>
<tr>
<td>(Y_2)</td>
<td>2</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>2</td>
</tr>
<tr>
<td>(Y_m)</td>
<td>2</td>
</tr>
</tbody>
</table>

\(\rightarrow T_{obs} \)

X or Y | group
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_1)</td>
<td>2</td>
</tr>
<tr>
<td>(X_2)</td>
<td>2</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>1</td>
</tr>
<tr>
<td>(X_n)</td>
<td>2</td>
</tr>
<tr>
<td>(Y_1)</td>
<td>1</td>
</tr>
<tr>
<td>(Y_2)</td>
<td>2</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>1</td>
</tr>
<tr>
<td>(Y_m)</td>
<td>1</td>
</tr>
</tbody>
</table>

\(\rightarrow T^* \)

Group status shuffled

Compare the observed t-statistic to the distribution obtained by randomly shuffling the group status of the measurements.
Permutation distribution

\[P\text{-value} = \Pr(|T^*| \geq |T_{obs}|) \]

- Small n & m: Look at all \(\binom{n+m}{n} \) possible shuffles.
- Large n & m: Look at a sample (w/repl) of 1000 such shuffles.

Example data:
All 5005 permutations: \(P = 0.015 \); sample of 1000: \(P = 0.013 \).

Estimating the permutation P-value

Let \(\hat{P} \) be the true P-value (if we do all possible shuffles).

Do \(N \) shuffles, and let \(X \) be the number of times the statistic after shuffling is bigger or equal to the observed statistic.

\[\hat{P} = \frac{X}{N} \quad \text{where} \quad X \sim \text{Binomial}(N,P) \]

\[E(\hat{P}) = P \quad \text{SD}(\hat{P}) = \sqrt{\frac{P(1-P)}{N}} \]

If the “true” P-value was \(P = 5\% \), and we do \(N=1000 \) shuffles:
\(\text{SD}(\hat{P}) = 0.7\% \).
Summary

The t-test relies on a normality assumption.

If this is a worry, consider:

- **Paired data:**
 - Signed rank test.
 - Permutation test.

- **Unpaired data:**
 - Rank-sum test.
 - Permutation test.

→ The crucial assumption is independence!

The fact that the permutation distribution of the t-statistic is often closely approximated by a t distribution is good support for just doing t-tests.