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ABSTRACT

Gene expression can be quantitatively analyzed by hybridizing fluor-tagged mRNA to targets on a cDNA
microarray. Comparison of gene expression levels arising from cohybridized samples is achieved by taking
ratios of average expression levels for individual genes. A novel method of image segmentation is provided
to identify cDNA target sites and a hypothesis test and confidence interval is developed to quantify the
significance of observed differences in expression ratios. In particular, the probability density of the ratio and
the maximum-likelihood estimator for the distribution are derived, and an iterative procedure for signal
calibration is developed. © 1997 Society of Photo-Optical Instrumentation Engineers. [S1083-3668(97)00504-2]

Keywords cDNA; microarray; gene expression; image segmentation; Mann–Whitney target detection; ratio
density, ratio confidence interval.
1 INTRODUCTION

The recent development of complementary DNA
microarray technology provides a powerful analyti-
cal tool for human genetic research.1 One of its ba-
sic applications is to quantitatively analyze fluores-
cence signals that represent the relative abundance
of mRNA from two distinct tissue samples. cDNA
microarrays are prepared by automatically printing
thousands of cDNAs in an array format on glass
microscope slides, which provide gene-specific hy-
bridization targets. Two different samples (of
mRNA) can be labeled with different fluors and
then cohybridized onto each arrayed gene. Ratios of
gene expression levels between the samples are cal-
culated and used to detect meaningfully different
expression levels between the samples for a given
gene.

This paper studies ratio distributions and devel-
ops a hypothesis test and confidence interval so
that expression ratios may be used for deciding sig-
nificant differences in sample expressions across
the gene population discernible on a microarray.
Assuming sample expression levels are indepen-
dent, levels are normally distributed, and there is a
constant coefficient of variation for the entire gene
set (a biochemical consequence of the mechanics of
transcript production), we derive the probability
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density of the ratio, find the maximum-likelihood
estimator for the distribution, and develop an itera-
tive procedure for signal calibration. Under the
aforementioned conditions, we can process a single
image and identify outliers. Expression measure-
ments are achieved by processing digitized mi-
croarray images, the key imaging development be-
ing a nonparametric statistical technique to extract
cDNA sites on the slide.

2 BIOLOGICAL BACKGROUND AND CDNA
MICROARRAY TECHNOLOGY

A cell relies on its protein components for a wide
variety of its functions. The production of energy,
the biosynthesis of all component macromolecules,
the maintenance of cellular architecture, and the
ability to act upon intra- and extracellular stimuli
are all protein dependent. Each cell within an or-
ganism contains the information necessary to pro-
duce the entire repertoire of proteins which that or-
ganism can specify. This information is stored as
genes within the organism’s DNA genome. The
number of human genes is estimated to be 30,000 to
100,000. Within any individual cell, only a portion
of the possible gene set is present as protein. Some
of the proteins present in a single cell are likely to
be present in all cells because they serve functions
required in every type of cell, and can be thought of
as ‘‘housekeeping’’ proteins. Other proteins serve
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specialized functions only required in particular
cell types. For example, muscle cells contain spe-
cialized proteins that form the dense contractile fi-
bers of a muscle. Given that a large part of a cell’s
specific functionality is determined by the genes it
is expressing, it is logical that transcription, the first
step in the process of converting the genetic infor-
mation stored in an organism’s genome into pro-
tein, would be highly regulated by the control net-
work that coordinates and directs cellular activity.

Regulation is readily observed in studies that
scrutinize activities evident in cells configuring
themselves for a particular function (specialization
into a muscle cell) or state (active multiplication or
quiescence). As cells alter their status, coordinate
transcription of the protein sets required for this
state can be observed. As a window both on cell
status and on the system controlling the cell, de-
tailed, global knowledge of the transcriptional state
could provide a broad spectrum of information use-
ful to biologists. Knowledge of when and in what
types of cell the protein product of a gene of un-
known function is expressed would provide useful
clues as to the likely function of that gene. Determi-
nation of gene expression patterns in normal cells
could provide detailed knowledge of the way in
which the control system achieves the highly coor-
dinated activation and deactivation required for de-
velopment and differentiation of a mature organ-
ism from a single fertilized egg. Comparison of
gene expression patterns in normal and pathologi-
cal cells could provide useful diagnostic ‘‘finger-
prints’’ and help identify aberrant functions that
would be reasonable targets for therapeutic inter-
vention.

The ability to carry out studies in which the tran-
scriptional state of a large number of genes is deter-
mined has, until recently, been severely inhibited
by limitations on our ability to survey cells for the
presence and abundance of a large number of gene
transcripts in a single experiment. A primary limi-
tation has been the small number of identified
genes. In the case of humans, only a few thousand
of the complete set (30,000 to 100,000 genes) have
been physically purified and characterized to any
extent. Another significant limitation has been the
cumbersome nature of transcription analysis. Even
a large experiment on human cells could track ex-
pression of only a dozen genes, clearly an inad-
equate sampling for inference about so complex a
control system.

Two recent technological advances have pro-
vided the means to overcome some of these limita-
tions to examining the patterns and relationships in
gene transcription. The cloning of molecules de-
rived from mRNA transcripts in particular tissues,
followed by the application of high-throughput se-
quencing to the DNA ends of the members of these
libraries has yielded a catalog of expressed se-
quence tags (ESTs).2 These signature sequences pro-
vide unambiguous identifiers for a large cohort of
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genes. At present, approximately 40,000 human
genes have been ‘‘tagged’’ by this route, and many
have been mapped to their genomic location.3

In addition, the clones from which these se-
quences were derived provide analytical reagents
that can be used in the quantitation of transcripts
from biological samples. The nucleic acid polymers,
DNA and RNA, are biologically synthesized in a
copying reaction in which one polymer serves as a
template for the synthesis of an opposing strand,
which is termed its complement. Even after separa-
tion from each other, these strands can be induced
to pair quite specifically with each other to form a
very tight molecular complex, a process called hy-
bridization. This specific binding is the basis of most
analytical procedures for quantitating the presence
of a particular species of nucleic acid, such as the
mRNA specifying a particular protein gene prod-
uct. Microarray technology is a recent
hybridization-based process that allows simulta-
neous quantitation of many nucleic acid species.1,4,5

This technique combines robotic placement (spot-
ting) of small amounts of individual, pure nucleic
acid species on a glass surface, hybridization to this
array with multiple fluorescently labeled nucleic ac-
ids, and detection and quantitation of the resulting
fluor-tagged hybrids with a scanning confocal mi-
croscope. When used to detect transcripts, a par-
ticular RNA transcript (an mRNA) is copied into
DNA (a cDNA) and this copied form of the tran-
script is immobilized on a glass surface.

The entire complement of transcript mRNAs
present in a particular cell type is extracted from
cells and then a fluor-tagged cDNA representation
of the extracted mRNAs is made in vitro by an en-
zymatic reaction termed reverse transcription. Fluor-
tagged representations of mRNA from several cell
types, each tagged with a fluor emitting a different
color light, are hybridized to the array of cDNAs
and then fluorescence at the site of each immobi-
lized cDNA is quantitated.

The various characteristics of this analytic
method make it particularly useful for directly
comparing the abundance of mRNAs present in
two cell types. An example of such a system is pre-
sented in Figure 1. In this experiment,4 an array of
cDNAs was hybridized with a green fluor-tagged
representation of mRNAs extracted from a tumori-
genic melanoma cell line (UACC-903) and a red
fluor-tagged representation of mRNAs was ex-
tracted from a nontumorigenic derivative of the
original cell line (UACC-903 +6). Monochrome im-
ages of the fluorescent intensity observed for each
of the fluors were then combined by placing each
image in the appropriate color channel of a red-
green-blue (RGB) image, as shown in Figure 2
(color plate). In this composite image, one can see
the differential expression of genes in the two cell
lines. Intense red fluorescence at a spot indicates a
high level of expression of that gene in the nontu-
morigenic cell line, with little expression of the
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Fig. 1 Illustration of a microarray system.
same gene in the tumorigenic parent. Conversely,
intense green fluorescence at a spot indicates high
expression of that gene in the tumorigenic line,
with little expression in the nontumorigenic daugh-
ter line. When both cell lines express a gene at simi-
lar levels, the observed array spot is yellow.

Visual inspection of such results is sufficient to
find genes where there is a very large differential
rate of expression. A more thorough study of the
changes in expression requires the ability to discern
more subtle changes in expression level and to de-
termine whether observed differences are the result
of random variation or whether they are likely to be
meaningful changes.

3 IMAGE PROCESSING AND
MANN–WHITNEY SEGMENTATION

Assuming that DNA products from two samples
have an equal probability of hybridizing to the tar-
get, the intensity measurement is a function of the
quantity of the specific DNA products available
within each sample. Locally (or pixelwise), the in-
tensity measurement is also a function of the con-
centration of the target segments. On the scanning
side, the fluorescent light intensity also depends on
the power and wavelength of the laser, the quan-
tum efficiency of the photomultiplier tube, and the
efficiency of other electronic devices. The resolution
of a scanned image is largely determined by pro-
cessing requirements and acquisition speed. The
scanning stage imposes a calibration requirement,
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though it may be relaxed later. The image analysis
task is to extract the average fluorescence intensity
from each target site (cDNA region).

There are several fluorescent light sources for
each slide: background, target, the target hybrid-
ized with sample 1 or sample 2, and (possibly) a
glass surface. The average intensity within a target
site is measured by the median image value on the
site. This intensity serves as a measure of the total
fluors emitted from the sample mRNA probes hy-
bridized on the target site. The median is used as
the average to mitigate the effect of outlying pixel
values created by noise.

Some image processing is required prior to mea-
suring intensity. Most is quite standard and need
not be described here. For instance, the image needs
to be segmented into target patches, but this task is
straightforward since the robot positions the cDNA
targets in a predetermined manner. Because the
number of pixels in the target site is limited, both
smoothing and sharpening filters need to be
avoided.

The difficult image processing task is to identify
the target site within the target patch (see Figure 3
color plate). Each target site is somewhat annular
owing to how the robot finger places the cDNA on
the slide and how the slide is treated; however,
there is variability in this placement (within the
patch) from image to image and from target to tar-
get. This variability can be so great that the target
region is simply a collection of subregions within
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Fig. 2 cDNA microarray image.

Fig. 3 Target patch, mask, and site.

Fig. 4 Target detection results at different significant levels.

COLOR PLATE
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the nominal circular target region. This instability
in the target region is manifested in the irregular
way the mRNA is hybridized to the target and the
consequent irregular brightness pattern (created by
the fluors) within the target site. It is important that
mRNA intensity be measured over these fluor re-
gions because only they correspond to probe-
hybridized-to-target areas. Conventional adaptive
thresholding segmentation techniques are unsatis-
factory when the signal is weak because there is no
marked transition between foreground and back-
ground. Standard morphological methods also fail
because for weak signals there is no consistent
shape information for the target area.

To overcome these difficulties, we propose a pixel
selection method based on the Mann–Whitney test.
There are three key points associated with this ap-
proach: (1) it associates a confidence level with ev-
ery intensity measurement based on the signifi-
cance level of the test and, if desired, it enables
multiple readouts at different confidence levels; (2)
it meets the real-time requirement of the system;
and (3) it is a distribution-free test, thereby elimi-
nating the need for normality assumptions.

We briefly describe the Mann–Whitney test as
employed here. Assume that X1 ,X2 ,. . . ,Xn and
Y1 ,Y2 ,. . . ,Ym are independent samples arising from
two random variables X and Y possessing means
mX and mY , respectively. The rank-sum statistic W ,
which is the sum of the ranks of all X samples in
the combined ordered sequence of the X and Y
samples, is used to test the null hypothesis,

H0 :mX2mY50
(1)

H1 :mX2mY.0.

The Mann–Whitney criterion reveals the relation
between the X and Y positions in the combined
ordered sequence. Rejection of H0 occurs when W
>wa ,n ,m , the critical value corresponding to the
significance level a. (See Ref. 6 for a detailed discus-
sion on the Mann–Whitney hypothesis test and no-
tations.)

A target site is segmented from the target patch
according to the following procedure. A predefined
target mask is used to identify a portion of the tar-
get patch that contains the target site. The target
mask is based on the geometry of the potential tar-
get area and can be constructed from specially
tagged targets or other strong targets (e.g., the tar-
get mask is obtained by finding all strong targets,
aligning them together, averaging, and then thresh-
olding). We randomly pick 8 sample pixels from
the known background (outside the target mask) as
Y1 ,Y2 ,. . . ,Y8 , and select the lowest 8 samples from
within the target mask as X1 ,X2 ,. . . ,X8 . The rank-
sum statistic W is calculated and, for a given sig-
nificance level a, compared with wa ,8,8 . We choose
8 samples here for both foreground and back-
ground because the Mann–Whitney statistic is ap-
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proximately normal when m5n>8.6 If the null hy-
pothesis is not rejected, then we discard some
predetermined number (perhaps only 1) of the 8
samples from the potential target region and select
the lowest 8 remaining samples from the region.
The Mann–Whitney test is repeated until the null
hypothesis is rejected.

When H0 is rejected, the target site is taken to be
the 8 pixels causing the rejection, together with all
pixels in the target mask whose values are greater
than or equal to the minimum value of the eight.
The resulting site is said to be a target site of sig-
nificance level a. If the null hypothesis is never re-
jected, then it is concluded that there is no appre-
ciable probe at the target site. Furthermore, one can
require that the Mann–Whitney target site contain
at a minimum some number of pixels for the target
site to be considered valid and measured for fluor
intensity. Figures 4(a) and 4(b) (color plate) show
the detection results of target sites at a50.0001 and
a50.05, respectively, where the detected site
boundaries are superimposed on the original im-
ages. Once a target site is determined, gene expres-
sion is measured by the median of the target site
minus the median of the background area (outside
the target mask area).

4 PROBABILITY DENSITY FUNCTION OF
RATIO PARAMETERS

We wish to use the expression ratio to determine
whether gene expression differs significantly for the
red and green samples. Such an approach is intui-
tive because equal distributions for red and green
values lead to a red/green ratio close to 1, and sig-
nificantly unequal distributions lead to a red/green
ratio significantly different from 1. This approach is
typically being applied by biologists developing
microarrays.

A key purpose of this paper is to examine expres-
sion ratios. Two points need to be taken into con-
sideration. First, even if red and green measure-
ments are identically distributed, the mean of the
ratio distribution will not be 1; second, the hypoth-
esis test needs to be performed on expression levels
from a single microarray. A salient factor in using
expression ratios rather than expression differences
is that gene expression levels are determined by the
intrinsic properties of each gene, which means that
differences in expression levels vary widely among
genes, regardless of the truth of the null hypothesis;
therefore it is inappropriate to pool statistics on
gene expression differences across the microarray.
Labeling the red and green microarray values for
the genes by R1 ,R2 ,. . . ,Rn and G1 ,G2 ,. . . ,Gn , re-
spectively, the desired hypothesis test is

H0 :mRk
5mGk

, H1 :mRk
ÞmGk

(2)

using the test statistic Tk5Rk /Gk . This requires
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finding a critical region for Tk , recognizing that the
mean of Tk under the null hypothesis is not 1.

It is well known that working with ratio distribu-
tions can be problematic,7–8 and recent research on
the matter is generally confined to normality stud-
ies of the ratio distribution,9 and numerical
calculations.10–11 However, as we now discuss, a
special situation arises for gene expression that per-
mits a more detailed statistical analysis, as well as
hypothesis tests and confidence intervals based on
a single microarray.

While it would be possible to gather data on the
routine level of expression for each specific gene in
each specific tissue, this would be a very difficult
undertaking. The method currently requires sub-
stantial quantities of mRNA (and thus tissue) for
each determination. Extending the studies to patho-
logical situations would further complicate the abil-
ity to gather material for replicates, since it will ini-
tially be necessary to assume that diseases with
complex molecular etiologies may have many
forms, making pooling of samples from different
individuals counterproductive. The most practical
and informative version of an assay of this type
would be achieved if information on the variance of
all or most of the genes in a sample could be used
to derive a statistically sound measurement of vari-
ance for each transcript. Fortunately, it appears that
the biology of transcription makes such an ap-
proach possible.

A transcript’s abundance at a given time is gov-
erned by the current rates of production and deg-
radation of that transcript. As would be expected of
a system faced with routine generation and de-
struction of these information intermediates, the
processes that produce and destroy transcripts rely
on common, core enzymatic machinery (poly-
merases and nucleases) whose specificity of activity
is modulated by accessory proteins that bind to the
core enzymes, the nucleic acid sites of action, or
both. As might also be expected of a system that
must constantly synthesize and hydrolyze tens of
thousands of molecules, molecular interactions are
based on very similar intermolecular affinities.
Nimbleness at this scale requires that the core ma-
chinery operate without too much bias, so that no
single or small class of transcripts consumes too
large a share of the machinery’s capacity. This type
of bulk processing is thus predicted to be an ap-
proximation of a much simpler reaction, in which
the level of a transcript will depend roughly on the
concentration of the accessory factors driving its se-
lection, and the variations for any particular tran-
script would be expected to be normally distributed
and constant (as a fraction of abundance) relative to
most of the other transcripts.

Such assumptions about the variances produce a
special situation that can be exploited to great ad-
vantage, allowing the use of the variation data from
all transcripts surveyed to be pooled to estimate the
global variation of transcript synthesis and destruc-
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tion. An important caveat to this hypothesis is that
transcripts present at extremely high or extremely
low levels could require a different method of con-
trol of synthesis/degradation and would not neces-
sarily have variances representative of transcripts
present at a common level.

Assuming there is constant coefficient of varia-
tion c for the entire gene set,

sRk
5cmRk

, sGk
5cmGk

. (3)

Under the null hypothesis H0 , mRk
5mGk

. Letting mk

denote the common value, the condition of Eq. (3)
becomes sRk

5sGk
5cmk . From the experimental

protocol, we assume that Rk and Gk are indepen-
dent, identically distributed normal random vari-
ables.

If X and Y are continuous random variables, T
5X/Y , and X and Y possess the joint probability
density function fX ,Y(x ,y), then the probability dis-
tribution function for T is

FT~t !5P~X<tY ,Y.0 !1P~X>tY ,Y,0 !

5E
0

`F E
2`

ty
fX ,Y~x ,y !dxGdy

1E
2`

0 F E
ty

`

fX ,Y~x ,y !dxGdy . (4)

For independent X and Y , differentiation yields the
probability density function for T as

fT~t !5E
0

`

yfX ,Y~ty ,y !dy2E
2`

0
yfX ,Y~ty ,y !dy

5E
0

`

yfX~ty !fY~y !dy2E
2`

0
yfX~ty !fY~y !dy ,

(5)

where the second equality follows from indepen-
dence.

We apply Eq. (5) under the normality, indepen-
dence, and constant-coefficient-of-variation condi-
tions. Since microarray intensity measurements are
positive, densities for both red and green values are
assumed to be 0 for negative arguments. The error
created by the simultaneous normality and
positive-value assumptions is negligible because
measurement intensities are sufficiently positive to
render the portions of the left tail of the ratio distri-
bution falling to the left of the y axis negligible.
Letting Tk5Rk /Gk ,

fTk
~t !5E

0

`

gfRk
~tg !fGk

~g !dg2E
2`

0
gfRk

~tg !fGk
~g !dg

5E
0

` 1

sRk
A2p

exp@2~tg2mRk
!2/2sRk

2 #
369NAL OF BIOMEDICAL OPTICS d OCTOBER 1997 d VOL. 2 NO. 4



CHEN, DOUGHERTY, AND BITTNER
Fig. 5 Ratio density functions for c50.05, 0.1, and 0.2.
3
1

sGk
A2p

exp@2~g2mGk
!2/2sGk

2 #gdg

5
1

2pc2 E
0

`

exp@2~tu21 !2/2c2#

3exp@2~u21 !2/2c2#udu , (6)

where the second equality follows from the
positive-value assumption and the third from Eq.
(3) and the substitution g/mk5u . Note that the
density for Tk is independent of k . This property is
not merely a consequence of Eq. (3), but depends
on normality.

The integration of Eq. (6) yields a solution that is
given by the standard error equation. Note that the
second exponential in the integrand is similar to the
normal density function with m51 and s5c . When
c is small (less than 0.3), the second exponential is
close to 0 for u,0. Therefore, by extending the in-
tegration to 2` , we have the approximation

fTk
~t !'

1
2pc2 E

2`

`

exp@2~tu21 !2/2c2#

3exp@2~u21 !2/2c2#udu

5
~11t !A11t2

c~11t2!2A2p
exp@2~t21 !2/2c2~11t2!# .

(7)

The approximation error of Eq. (7) can be numeri-
cally evaluated. For example, given c50.3, at
t51.0, the approximation error between Eqs. (6)
and (7) is 4.831028, and at t53.0, the error is 1.2
31028. Figure 5 depicts the probability density
function given in Eq. (7) for c50.05, 0.1, and 0.2.
The density function of Eq. (7) is an asymmetric
function and its peak is close to 1 under the null
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hypothesis. Since Eqs. (6) and (7) are not functions
of k , we denote the density function by fT(t ;c) with
parameter c .

5 CONFIDENCE INTERVALS AND
MAXIMUM-LIKELIHOOD ESTIMATION

Confidence intervals can be obtained via Eq. (7).
Table 1 lists the upper (right) limit and lower (left)
limit of 95% confidence intervals for different c val-
ues, as well as the mean and standard deviation of
the corresponding distributions. As functions of c ,
the mean and standard deviations of the confidence
interval limits can be approximated by polynomial
functions

y5a3c31a2c21a1c1a0 . (8)

Table 2 gives the appropriate polynomial coeffi-
cients for the upper limit, lower limit, mean, and
standard deviation. Figure 6 provides curves for 95,
90, 85, and 80% confidence levels. Most results ob-
tained here have been verified by Monte Carlo
simulation. Referring back to the hypothesis test of
Eq. (2), for each k , the acceptance region for the test
statistic Tk is the confidence interval for the appro-
priate value of c and the confidence level.

Typically, c needs to be estimated from the data.
Using the density of Eq. (7), we can obtain a
maximum-likelihood estimator for c . The likeli-
hood function is

L~c !5)
i51

n
~11t i!A11t i

2

c~11t i
2!2A2p

exp@2~t i21 !2/2c2~1

1t i
2!# , (9)

where t1 ,t2 ,. . . ,tn are ratio samples taken from a
single collection of expression values, for example,
all ratios from the housekeeping genes in a microar-
ray. The maximum-likelihood criterion requires
that d@ log L(c)#/dc50. Hence, the estimator for c is

ĉ5F 1
n (

i51

n
~t i21 !2

~11t i
2!

G 1/2

. (10)

6 UNCALIBRATED SIGNALS

The null hypothesis of equal means is appropriate
for calibrated signal acquisition, but in practice this
may not be the case. Therefore we consider the un-
calibrated situation in which the means of the red
and green signals are related by a constant amplifi-
cation (or reduction) gain factor m , mRk

5mmGk
. If

m>1, then the red signal is stronger than the green.
We can follow the same derivation as in the cali-
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brated case except that now the ratio density has
two parameters, c and m . This results in the recur-
sive relation

fT~t ;c ,m !5
1
m

fT~t/m ;c ,1!, (11)

Table 1 Lower and upper limits at 95% confidence level, and
other statistics of ratio density.

Input
dist.
C.V. (c)

Output distribution parameters

L. limit U. limit Mean (m) Dev. (s)
C.V.
(s/m)

Peak
tmax

0.01 0.972 1.026 1.000 0.014 0.014 1.000

0.02 0.945 1.052 1.000 0.028 0.028 0.999

0.03 0.919 1.080 1.001 0.042 0.042 0.998

0.04 0.894 1.108 1.002 0.056 0.057 0.997

0.05 0.869 1.137 1.003 0.071 0.071 0.995

0.06 0.845 1.167 1.004 0.085 0.085 0.993

0.07 0.822 1.198 1.005 0.100 0.100 0.990

0.08 0.798 1.230 1.007 0.115 0.114 0.987

0.09 0.776 1.263 1.008 0.130 0.129 0.984

0.10 0.754 1.297 1.010 0.145 0.144 0.980

0.11 0.732 1.332 1.013 0.161 0.159 0.976

0.12 0.710 1.369 1.015 0.177 0.174 0.972

0.13 0.689 1.407 1.018 0.193 0.190 0.967

0.14 0.669 1.447 1.021 0.210 0.206 0.962

0.15 0.648 1.488 1.024 0.227 0.222 0.957

0.16 0.628 1.531 1.028 0.245 0.239 0.951

0.17 0.609 1.576 1.032 0.264 0.256 0.946

0.18 0.589 1.623 1.036 0.283 0.274 0.939

0.19 0.570 1.672 1.041 0.304 0.293 0.933

0.20 0.551 1.724 1.046 0.326 0.312 0.926

0.21 0.532 1.778 1.052 0.349 0.332 0.919

0.22 0.514 1.835 1.057 0.372 0.353 0.912

0.23 0.495 1.895 1.064 0.397 0.374 0.905

0.24 0.477 1.958 1.070 0.423 0.396 0.897

0.25 0.459 2.026 1.077 0.450 0.418 0.890

0.26 0.441 2.098 1.084 0.477 0.440 0.882

0.27 0.424 2.174 1.091 0.504 0.460 0.874

0.28 0.407 2.257 1.098 0.531 0.484 0.866

0.29 0.390 2.346 1.105 0.558 0.506 0.858

0.30 0.373 2.442 1.111 0.585 0.527 0.850
JOUR
where fT(•;c ,1) is given by Eq. (7). Figure 7 shows
cases for m50.5, 1, and 2 (when c50.1). For m
50.5, we expect Rk /Gk to be about 0.5, which is
what Figure 7 indicates.

In the uncalibrated setting, estimators are re-
quired for both c and m ; however, a closed-form
solution as in the calibrated case is precluded by
reliance on the recursion of Eq. (11). We proceed
iteratively to obtain estimators. Note from Table 1
that the means for different c values are very close
to 1 when m51. Intuitively, when two signals are
approximately the same, the mode of the ratio den-
sity will be around 1. Therefore, a usual calibration
practice is to move the ratio histogram mode to 1
when the red and green signals are not calibrated.
This calibration procedure is not strictly correct be-
cause the peak of the ratio density changes with
parameter c . To account for this effect, we first as-
sume the population mean m0 to be 1 and let the
first approximation m1 of the calibration parameter
be the sample mean. The sample data are then cali-
brated by m1 . After that, Eq. (10) is used to estimate
the first approximation ĉ1 of c . Estimation proceeds
by iteratively repeating the procedure. The follow-
ing algorithm results:

1. Initialize mean estimate m̂0 of the ratio density
of Eq. (7) to be 1 (equivalent to assuming
c050).

2. Calibrate ratio samples so that the input red
and green signals are approximately equal by
taking the estimator of m , say m̂i , to be the
sample mean divided by the previous mean
estimator,

m̂i5
1

m̂i21
S1
n (

j51

n

tjD. (12)

The calibration factor is taken to be 1/m̂i . The
normalized ratio data set is

~t18 ,t28 ,...,tn8!5~t1 /m̂i ,t2 /m̂i ,...,tn /m̂i!. (13)

3. Use the maximum-likelihood estimator of Eq.
(10) to calculate ĉ i by evaluating the estimator
with the newly calibrated ratio data (t i8 ,
i51,2,...,n).

4. Estimate the mean m̂ i of the ratio distribution
given the new ĉ i by using the polynomial re-
gression given in Table 2 (m50.364c3

11.279c220.0427c11.001).
5. Repeat steps 2 through 4 until a satisfactory

result is obtained. Since the ratio mean m is
close to 1 for even relatively large values of c ,
five iterations are usually sufficient.

6. Upper and lower confidence limits (u1 ,u2)
can be obtained using Tables 1 or 2, and then
converting them to the desired interval
(u1•m̂ , u2•m̂).
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Table 2 Parameters of fitting polynomial functions.

Conf.
level a3 a2 a1 a0

Goodness of fit
(R2)

Lower limit 22.805 2.911 22.706 0.979 0.999994

95% Upper limit 28.644 22.830 3.082 0.989 0.99993

Lower limit 25.002 4.462 23.496 0.9968 0.99998

99% Upper limit 78.349 215.161 4.810 0.9648 0.99998

Mean (m) 0.364 1.279 20.0427 1.001 0.9997

SD 6.259 0.190 1.341 0.00225 0.9998
To verify the accuracy of the iterative method un-
der the H0 condition (mRk

5mGk
), we performed the

following simulation assuming 100 red and 100
green intensity data points. For k51,2,...,100, the
kth red signal’s (representing the kth gene expres-
sion level in sample 1) mean intensity mRk

is drawn
from a uniform random process with a range from
100 to 30,000 (simulating a 16-bit integer range). For
a given m and c value, along with the normality for
both red and green signals, we generate a single
datum for both the kth red and green signals,
thereby obtaining a sample of the red/green ratio
for each k . Simulations were done for m from 0.3 to
3 with a step of 0.1, and for c from 0.01 to 0.3 with
a step of 0.01, each simulation involving the full
iterative procedure. The entire simulation was re-
peated 30 times for each value of m and c . Average
estimation errors for c and m are under 1% where
the error for c is defined as u( ĉ2c)/cu and similarly
for m .

7 EXPERIMENTAL RESULTS

Consider the superimposed microarray image
from UACC-903 (red channel) and UACC-903
(16) (green channel) shown in Figure 2.
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The full array contains 1368 clone segments. A
total of 88 ratio samples whose ratios are believed
to be about 1 (whose gene expression levels are
assumed unchanged in both cell lines), such
as housekeeping genes, are listed in
Web site http://www.nhgri.nih.gov/DIR/LCG/
ARRAY/expn.html. Since acquisition does not en-
sure perfect calibration, the iterative procedure is
used. The result is as follows:

m 1.1316
c 0.1727 (or 17.27%)
99% confidence interval: (0.566, 1.977)

The step-by-step iterative estimation is shown in
Table 3. The 99.0% confidence interval for c
50.1727 and m51.1316 is (0.56617, 1.97684).

Based on this interval, 92 ratio samples are found
to be significant. Of these, 70 were found
to be significant using the inappropriately
narrow confidence interval of Ref. 4 (see
Web site http://www.nhgri.nih.gov/DIR/LCG/
ARRAY/expn.html). Table 4 lists the ones missed
by the confidence limits of Ref. 4. Some of the
newly found significant changes are biologically in-

Fig. 7 Ratio density functions for m50.5, 1, and 2 when
c50.1.
Fig. 6 Limits for different confidence levels.
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teresting and further bolster general impressions re-
sulting from the original cohort of genes showing
significant changes.

Two further examples of the tendency of
the chromosome 6 suppressed line toward in-
creased expression of genes associated with differ-
entiation are the myeloid leukemia cell differentia-
tion protein (mcl1) and the cell adhesion regulator
protein (CAR/CMAR). Increased expression of
the mcl1 gene has been found to be a very early
indicator of induced differentiation in cancer
cells.12,13 Increased expression of the CAR gene has
been correlated with reduced spontaneous meta-
static potential in the HT-29 (human adenocarci-
noma) cell line,14 presumably due to a greater rep-
ertoire of integrins, with increased adherence of
the cells to the extracellular matrix. In addition to
the tendency toward expression of genes associated
with differentiation, changes are observed that
suggest that the suppressed cells are more capable
of modulating oncogene activity. In addition to
the strong increase in p21 expression previously
seen, a significant increase in the expression of the
ras suppressor Rsu-1 is observed. Rsu-1 has been
shown to be a potent inhibitor of Jun kinase
activation.15

8 CONCLUSION

Ratios are used to quantify gene expression distinc-
tions on a cDNA microarray arising from different
samples. Under the mathematical conditions as-
sumed for average mRNA expression intensities,
the ratio distribution has been derived, maximum-
likelihood estimation characterized, and calibration
achieved via an iterative algorithm. Empirically, a
careful mathematical analysis of calibration and
confidence limits has revealed significant gene ex-
pression ratios that were missed with a less precise
analysis.

Table 3 Step-by-step illustration of the iterative estimation.

Step i
Sample

scaling factor
ci

(Eq. 10)
m i

(Table 2)
mi

(Eq. 12)

Initial — — m051.0 m051.1697

1 1/m0 0.1741 1.03425 1.1420

2 1/m1 0.1728 1.03370 1.1315

3 1/m2 0.1727 1.03365 1.1316

4 1/m3 0.1727 Stop! —
JOUR
Table 4 Additional genes showing different expression levels.a

Gene name R/G Ratio

Pre-mRNA splicing factor SRp7 2.33

Casein kinase I delta 2.33

MAC25 2.32

Endothelin-1 (EDN1) 2.30

B12 protein 2.25

RSU-1/RSP-1 2.25

Id1 2.24

Similar to induced myeloid leukemia cell
differentiation protein

2.22

Male-enhanced antigen mRNA (Mea) 2.20

PP15 (placental protein 15) 2.20

Vascular endothelial GF 2.18

Calphobindin II 2.18

Similar to mouse transplantation antigen
p35B

2.15

22 kDa smooth muscle protein (SM22) 2.15

Alternative guanine nucleotide-binding
regulatory protein (G)

2.13

Nuclear autoantigen GS2NA 2.13

Cadherin-associated protein-related
(cap-r)

2.13

Mitochondrial phosphate carrier protein 2.12

Alpha NAC 2.10

Thymopoietin beta 2.08

B-lymphocyte serine/threonine protein
kinase

2.07

Platelet alpha SNAP 2.06

Lamin B2 (LAMB2) 2.06

CMAR 2.06

Inosine-58-monophosphate
dehydrogenase (IMP)

2.02

I-Rel 1.99

DNA-binding protein (CROC-1A) 1.99

PolyA binding protein 1.98

bcr (break point cluster gene) 0.57

Mitotic feedback control protein Madp2
homolog

0.55

Protein-tyrosine phosphatase 0.55

Human poly(ADP-ribose) synthetase 0.53

a The named genes, shown in decreasing ratio order, are additional genes
found to have different expression levels in a chromosome 6–suppressed
melanoma cell line than in the tumorigenic parent (99% confidence level).
The original findings were reported in Ref. 4.
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