Homework Assignment #3
(Due Wednesday, October 12, 2005)

Please hand in a hard copy of your R code, and send an electronic version of it to Kenny (kshum@jhsph.edu).

1. Assume that A is a symmetric $n \times n$ matrix with real eigenvalues, and that u_1, \ldots, u_n are linear independent eigenvectors of A. Let $U = (u_1, \ldots, u_n)$. Show that:

 (a) $A = U \Lambda U^{-1}$ for some diagonal matrix Λ.

 (b) $I + A = U D U^{-1}$ for some diagonal matrix D.

 (c) If D is non-singular, then $I + A$ is non-singular, and $(I + A)^{-1} = U D^{-1} U^{-1}$.

2. Let J be the $n \times n$ matrix with all entries equal to 1.

 (a) Show that $u_1 = (1, \ldots, 1)'$, $u_2 = (1, -1, 0, \ldots, 0)'$, $u_3 = (1, 0, -1, 0, \ldots, 0)'$, $u_4 = (1, 0, 0, -1, 0, \ldots, 0)'$, \ldots, $u_n = (1, 0, \ldots, 0, -1)'$ are eigenvectors of J, and that they are linearly independent.

 (b) Find $(I + aJ)^{-1}$ for the numbers $a \in \mathbb{R}$ for which the inverse exists.

 (c) Show that $(I + aJ)^{-1}$ is of the form $I + bJ$, and find b.

3. Consider the random variables Y_1, \ldots, Y_n defined as $Y_i = U + Z_i$, where $U \sim N(\xi, \tau^2)$, $Z_i \sim iidN(\mu, \sigma^2)$, and U and Z_i are independent. Let $Y = (Y_1, \ldots, Y_n)'$.

 (a) What is the distribution of Y_i?

 (b) Find $cov(Y_i, Y_j)$ and $corr(Y_i, Y_j)$ for $i \neq j$.

 (c) What is the distribution of Y?

 (d) Consider the estimator $\tilde{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$. Is \tilde{Y} an unbiased estimator for $E[Y_1]$?

 (e) Let \tilde{Y} be the $n-$vector whose entries are all \tilde{Y}. Show that $\tilde{Y} = MY$ for some projection matrix M.

 (f) Consider the estimator $S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \tilde{Y})^2$. Show that $(n-1)S^2 = Y'PY$ for some projection matrix P.

 (g) What is the distribution of S^2?

 (h) Is S^2 an unbiased estimator for $var(Y_1)$?

 (i) Let $V = var(Y)$. Find the inverse V^{-1} and the determinant $det(V)$.

4. Write an R function `myrmvn()` that generates samples from a multivariate normal distribution, starting with the standard normal distribution (i.e. using `rnorm()`). Your function takes as arguments `mu` (the mean vector of length `n`), `sigma` (the \(n \times n\) covariance matrix), and `hm` (the number of independent samples from the multivariate distribution).

![Scatter Plot](image)

Generate a scatter plot of 1000 independent samples of your favorite bivariate normal distribution (with mean not equal to \((0,0)',\) and non-zero off-diagonal elements in the covariance matrix).

5. (a) Write an R function `myrchisq()` that generates independent random samples from the non-central \(\chi^2\) distribution, using only the R function `rnorm()`. Your function `myrchisq()` takes as arguments `n` (the number of independent samples), `df` (the degrees of freedom), and `lambda` (the non-centrality parameter).

(b) Using the above `myrchisq(n, df, lambda)`, write a function `mypchisq(q, n, df, lambda)` that returns \(F(q) = P(\chi^2_{df}(\lambda) \leq q)\), approximated by simulation.

(c) How large do you have to choose `n` to guarantee that your estimate has a standard deviation less than 0.01?