Sample size calculations

\[n = \frac{\text{\$ available}}{\text{\$ per sample}} \]
Power

\(X_1, \ldots, X_n \text{ iid Normal}(\mu_A, \sigma_A)\) \quad \(Y_1, \ldots, Y_m \text{ iid Normal}(\mu_B, \sigma_B)\)

Test \(H_0 : \mu_A = \mu_B\) vs \(H_a : \mu_A \neq \mu_B\) at \(\alpha = 0.05\).

Test statistic: \(T = \frac{\bar{X} - \bar{Y}}{\hat{SD}(X - Y)}\).

\[\rightarrow \text{ Critical value: } C \text{ such that } \Pr(|T| > C \mid \mu_A = \mu_B) = \alpha.\]

Power: \(\Pr(|T| > C \mid \mu_A \neq \mu_B)\)
Power depends on...

- The design of your experiment
- What test you’re doing
- Chosen significance level, α
- Sample size
- True difference, $\mu_A - \mu_B$
- Population SD’s, σ_A and σ_B.
The case of known population SDs

Suppose σ_A and σ_B are known.

Then $\overline{X} - \overline{Y} \sim \text{Normal}(\mu_A - \mu_B, \sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}})$

Test statistic: $\tilde{Z} = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}}$

If H_0 is true (i.e. $\mu_A = \mu_B$), we have $\tilde{Z} \sim \text{Normal}(0,1)$.

$\rightarrow C = z_{\alpha/2}$ so that $\Pr(\mid\tilde{Z}\mid > C \mid \mu_A = \mu_B) = \alpha$.

For example, for $\alpha = 0.05$, $C = qnorm(0.975) = 1.96$.
Power when the population SDs are known

If $\mu_A - \mu_B = \Delta$, then $Z = \frac{(\bar{X} - \bar{Y}) - \Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} \sim \text{Normal}(0,1)$

$$\Pr\left(\frac{|\bar{X} - \bar{Y}|}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} > 1.96\right) = \Pr\left(\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} > 1.96\right) + \Pr\left(\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} < -1.96\right)$$

$$= \Pr\left(\frac{\bar{X} - \bar{Y} - \Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} > 1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}}\right) + \Pr\left(\frac{\bar{X} - \bar{Y} - \Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} < -1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}}\right)$$

$$= \Pr\left(Z > 1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}}\right) + \Pr\left(Z < -1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}}\right)$$
Calculations in R

\[\text{Power} = \text{Pr} \left(Z > 1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} \right) + \text{Pr} \left(Z < -1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} \right) \]

\[C \leftarrow \text{qnorm}(0.975) \]
\[\text{se} \leftarrow \text{sqrt}(\text{sigmaA}^2/n + \text{sigmaB}^2/m) \]
\[\text{power} \leftarrow 1 - \text{pnorm}(C - \text{delta}/\text{se}) + \text{pnorm}(-C - \text{delta}/\text{se}) \]
Power depends on . . .

\[
\text{Power} = \text{Pr} \left(Z > C - \frac{\Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} \right) + \text{Pr} \left(Z < -C - \frac{\Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} \right)
\]

- Choice of \(\alpha \) (which affects C)
 Larger \(\alpha \) → less stringent → greater power.

- \(\Delta = \mu_A - \mu_B \) = the true “effect.”
 Larger \(\Delta \) → greater power.

- Population SDs, \(\sigma_A \) and \(\sigma_B \)
 Smaller \(\sigma \)'s → greater power.

- Sample sizes, \(n \) and \(m \)
 Larger \(n, m \) → greater power.
Choice of sample size

We mostly influence power via n and m.

Power is greatest when \(\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m} \) is as small as possible.

Suppose the total sample size \(N = n + m \) is fixed.

\[
\rightarrow \quad \frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m} \quad \text{is minimized when} \quad n = \frac{\sigma_A}{\sigma_A + \sigma_B} \times N \quad \text{and} \quad m = \frac{\sigma_B}{\sigma_A + \sigma_B} \times N
\]

For example:

• If \(\sigma_A = \sigma_B \), we should choose \(n = m \).

• If \(\sigma_A = 2 \sigma_B \), we should choose \(n = 2m \).

That means, if \(\sigma_A = 4 \) and \(\sigma_B = 2 \), we might use \(n=20 \) and \(m=10 \).
Calculating the sample size

Suppose we seek 80% power to detect a particular value of $\mu_A - \mu_B = \Delta$, in the case that σ_A and σ_B are known.

(For convenience here, let’s pretend that $\sigma_A = \sigma_B$ and that we plan to have equal sample sizes for the two groups.)

$$\text{Power} \approx \Pr \left(Z > C - \frac{\Delta}{\sqrt{\frac{\sigma^2}{n} + \frac{\sigma^2}{m}}} \right) = \Pr \left(Z > 1.96 - \frac{\Delta \sqrt{n}}{\sigma \sqrt{2}} \right)$$

→ Find n such that $\Pr \left(Z > 1.96 - \frac{\Delta \sqrt{n}}{\sigma \sqrt{2}} \right) = 80\%$.

Thus $1.96 - \frac{\Delta \sqrt{n}}{\sigma \sqrt{2}} = \text{qnorm}(0.2) = -0.842$.

→ $\sqrt{n} = \frac{\sigma}{\Delta} \{1.96 - (-0.842)\} \sqrt{2}$ → $n = 15.7 \times \left(\frac{\sigma}{\Delta}\right)^2$
Equal but unknown population SDs

\(X_1, \ldots, X_n \text{ iid Normal}(\mu_A, \sigma) \quad Y_1, \ldots, Y_m \text{ iid Normal}(\mu_B, \sigma) \)

Test \(H_0 : \mu_A = \mu_B \) vs \(H_a : \mu_A \neq \mu_B \) at \(\alpha = 0.05 \).

\[
\hat{\sigma}_p = \sqrt{\frac{s_A^2(n-1)+s_B^2(m-1)}{n+m-2}} \quad \text{SD}(\bar{X} - \bar{Y}) = \hat{\sigma}_p \sqrt{\frac{1}{n} + \frac{1}{m}}
\]

Test statistic: \(T = \frac{\bar{X} - \bar{Y}}{\text{SD}(\bar{X} - \bar{Y})} \).

In the case \(\mu_A = \mu_B \), \(T \) follows a t distribution with \(n + m - 2 \) d.f.

\[\rightarrow \text{Critical value: } C = qt(0.975, n+m-2) \]
Power: equal but unknown pop’n SDs

\[
\text{Power} = \Pr \left(\frac{|\bar{X} - \bar{Y}|}{\hat{\sigma}_p \sqrt{\frac{1}{n} + \frac{1}{m}}} > C \right)
\]

\[\rightarrow\]

In the case \(\mu_A - \mu_B = \Delta \), the statistic \(\frac{\bar{X} - \bar{Y}}{\hat{\sigma}_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \) follows a non-central t distribution.

This distribution has two parameters:

\[\rightarrow\]

- The degrees of freedom (as before)

\[\rightarrow\]

- The non-centrality parameter, \(\frac{\Delta}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \)

\[C \leftarrow \text{qt}(0.975, n + m - 2)\]

\[\text{se} \leftarrow \text{sigma} \times \text{sqrt}(\frac{1}{n} + \frac{1}{m})\]

\[\text{power} \leftarrow 1 - \text{pt}(C, n+m-2, \text{ncp}=[\Delta/\text{se}]) + \text{pt}(-C, n+m-2, \text{ncp}=[\Delta/\text{se}])\]
Power: equal population SDs

Power curves

![Power curves graph with different sample sizes and known vs. unknown SDs.](image-url)
A built-in function: `power.t.test()`

Calculate power (or determine the sample size) for the t-test when:

- Sample sizes equal
- Population SDs equal

Arguments:

- `n = sample size`
- `delta = \Delta = \mu_2 - \mu_1`
- `sd = \sigma = population SD`
- `sig.level = \alpha = significance level`
- `power = the power`
- `type = type of data (two-sample, one-sample, paired)`
- `alternative = two-sided or one-sided test`
Examples

A. $n = 10$ for each group; effect $= \Delta = 5$; pop’n SD $= \sigma = 10$

$$\text{power.t.test}(n=10, \ delta=5, \ sd=10)$$

$\rightarrow 18\%$

B. power $= 80\%$; effect $= \Delta = 5$; pop’n SD $= \sigma = 10$

$$\text{power.t.test}(\ delta=5, \ sd=10, \ power=0.8)$$

$\rightarrow n = 63.8$ $\rightarrow 64$ for each group

C. power $= 80\%$; effect $= \Delta = 5$; pop’n SD $= \sigma = 10$; one-sided

$$\text{power.t.test}(\ delta=5, \ sd=10, \ power=0.8, \ alternative="\text{one.sided}\")$$

$\rightarrow n = 50.2$ $\rightarrow 51$ for each group
Unknown and different pop’n SDs

\[X_1, \ldots, X_n \text{ iid Normal}(\mu_A, \sigma_A) \quad Y_1, \ldots, Y_m \text{ iid Normal}(\mu_B, \sigma_B) \]

Test \(H_0 : \mu_A = \mu_B \text{ vs } H_a : \mu_A \neq \mu_B \) at \(\alpha = 0.05 \).

Test statistic: \(T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{s_A^2}{n} + \frac{s_B^2}{m}}} \)

To calculate the critical value for the test, we need the null distribution of \(T \) (that is, the distribution of \(T \) if \(\mu_A = \mu_B \)).

To calculate the power, we need the distribution of \(T \) given the value of \(\Delta = \mu_A - \mu_B \).

We don’t really know either of these.
Power by computer simulation

• Specify n, m, σ_A, σ_B, $\Delta = \mu_A - \mu_B$, and the significance level, α.

• Simulate data under the model.

• Perform the proposed test and calculate the P-value.

• Repeat many times.

\longrightarrow Example:

$n = 5$, $m = 10$, $\sigma_A = 1$, $\sigma_B = 2$,

$\Delta = 0.0, 0.5, 1.0, 1.5, 2.0$ or 2.5.
Example
Example
Determining sample size

The things you need to know:

- Structure of the experiment
- Method for analysis
- Chosen significance level, α (usually 5%)
- Desired power (usually 80%)
- Variability in the measurements
 → If necessary, perform a pilot study, or use data from prior experiments or publications.
- The smallest meaningful effect
Reducing sample size

- Reduce the number of treatment groups being compared.
- Find a more precise measurement (e.g., average survival time rather than proportion dead).
- Decrease the variability in the measurements.
 - Make subjects more homogenous.
 - Use stratification.
 - Control for other variables (e.g., weight).
 - Average multiple measurements on each subject.