Prediction and Calibration

Estimating the mean response

We can use the regression results to predict the expected response for a new concentration of hydrogen peroxide. But what is its variability?
Variability of the mean response

Let \(\hat{y} \) be the predicted mean for some \(x \), i.e.

\[
\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x
\]

Then

\[
E(\hat{y}) = \beta_0 + \beta_1 x
\]

\[
 \text{var}(\hat{y}) = \sigma^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right)
\]

where \(y = \beta_0 + \beta_1 x \) is the true mean response.

Why?

\[
E(\hat{y}) = E(\hat{\beta}_0 + \hat{\beta}_1 x)
= E(\hat{\beta}_0) + x E(\hat{\beta}_1)
= \beta_0 + x \beta_1
\]

\[
\text{var}(\hat{y}) = \text{var}(\hat{\beta}_0 + \hat{\beta}_1 x)
= \text{var}(\hat{\beta}_0) + \text{var}(\hat{\beta}_1 x) + 2 \text{cov}(\hat{\beta}_0, \hat{\beta}_1 x)
= \text{var}(\hat{\beta}_0) + x^2 \text{var}(\hat{\beta}_1) + 2 x \text{cov}(\hat{\beta}_0, \hat{\beta}_1)
= \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{SXX} \right) + \sigma^2 \left(\frac{x^2}{SXX} \right) - \frac{2 x \bar{x} \sigma^2}{SXX}
= \sigma^2 \left[\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right]
\]
Confidence intervals

Hence

\[\hat{y} \pm t_{(1 - \frac{\alpha}{2}), n - 2} \times \hat{\sigma} \times \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX}} \]

is a \((1 - \alpha)\times100\%\) confidence interval for the mean response given \(x\).
Prediction

Now assume that we want to calculate an interval for the predicted response y^* for a value of x.

There are two sources of uncertainty:

(a) the mean response

(b) the natural variation σ^2

The variance of \hat{y}^* is

$$\text{var}(\hat{y}^*) = \sigma^2 + \sigma^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right)$$

Prediction intervals

Hence

$$\hat{y}^* \pm t_{(1 - \frac{\alpha}{2}),n-2} \times \hat{\sigma} \times \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{SXX}}$$

is a $(1 - \alpha) \times 100\%$ prediction interval for the predicted response given x.

→ When n is very large, we get roughly

$$\hat{y}^* \pm t_{(1 - \frac{\alpha}{2}),n-2} \times \hat{\sigma}$$
Prediction intervals

pf3d7

H2O2 concentration

95% confidence limits for the mean response
95% confidence limits for the prediction

Span and height

Span (inches)

Height (inches)
Regression for calibration

That prediction interval is for the case that the x’s are known without error while

\[y = \beta_0 + \beta_1 x + \epsilon \quad \text{where } \epsilon = \text{error} \]

Another common situation:

- We have a number of pairs \((x, y)\) to get a calibration line/curve.
- x’s basically without error; y’s have measurement error.
- We obtain a new value, \(y^*\), and want to estimate the corresponding \(x^*\):

\[y^* = \beta_0 + \beta_1 x^* + \epsilon \]
Example

Another example
Regression for calibration

→ Data: \((x_i, y_i)\) for \(i = 1, \ldots, n\)
 with \(y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \epsilon_i \sim \text{iid Normal}(0, \sigma)\)

\(y_j^*\) for \(j = 1, \ldots, m\)
 with \(y_j^* = \beta_0 + \beta_1 x^* + \epsilon_j^*, \epsilon_j^* \sim \text{iid Normal}(0, \sigma)\) for some \(x^*\)

→ Goal:
 Estimate \(x^*\) and give a 95% confidence interval.

→ The estimate:
 Obtain \(\hat{\beta}_0\) and \(\hat{\beta}_1\) by regressing the \(y_i\) on the \(x_i\).
 Let \(\hat{x}^* = (\bar{y}^* - \hat{\beta}_0) / \hat{\beta}_1\) where \(\bar{y}^* = \sum_j y_j^* / m\)

95% CI for \(\hat{x}^*\)

Let \(T\) denote the 97.5th percentile of the t distr’n with \(n-2\) d.f.
Let \(g = T / [|\hat{\beta}_1| / (\hat{\sigma} / \sqrt{SXX})] = (T \hat{\sigma}) / (|\hat{\beta}_1| \sqrt{SXX})\)

→ If \(g \geq 1\), we would fail to reject \(H_0: \beta_1 = 0!\)
 In this case, the 95% CI for \(\hat{x}^*\) is \((-\infty, \infty)\).

→ If \(g < 1\), our 95% CI is the following:

\[
\hat{x}^* \pm \frac{\hat{x}^* - \bar{x}}{g^2 + (T \hat{\sigma} / |\hat{\beta}_1|)^2} \sqrt{\frac{(\hat{x}^* - \bar{x})^2}{SXX} + \frac{1}{m} + \frac{1}{n}}
\]

For very large \(n\), this reduces to approximately \(\hat{x}^* \pm (T \hat{\sigma}) / (|\hat{\beta}_1| \sqrt{m})\)