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Summary. We consider studies of cohorts of individuals after a critical event, such as an

injury, with the following characteristics. First, the studies are designed to measure “input”

variables, which describe the period before the critical event, and to characterize the distribu-

tion of the input variables in the cohort. Second, the studies are designed to measure “output”

variables, primarily mortality after the critical event, and to characterize the predictive (con-

ditional) distribution of mortality given the input variables in the cohort. Such studies often

possess the complication that the input data are missing for those who die shortly after the

critical event because the data collection takes place after the event. Standard methods of

dealing with the missing inputs, such as imputation or weighting methods based on an as-

sumption of ignorable missingness, are known to be generally invalid when the missingness of

inputs is nonignorable, that is, when the distribution of the inputs is different between those

who die and those who live. To address this issue, we propose a novel design that obtains and

uses information on an additional key variable – a treatment or externally controlled variable,

which if set at its “effective” level, could have prevented the death of those who died. We

show that the new design can be used to draw valid inferences for the marginal distribution of

inputs in the entire cohort, and for the conditional distribution of mortality given the inputs,

also in the entire cohort, even under nonignorable missingness. The crucial framework that we

use is principal stratification based on the potential outcomes, here mortality under both levels

of treatment. We also show using illustrative preliminary injury data, that our approach can

reveal results that are more reasonable than the results of standard methods, in relatively dra-

matic ways. Thus, our approach suggests that the routine collection of data on variables that

could be used as possible treatments in such studies of inputs and mortality should become

common.

Key Words: Causal inference; Censoring by death; Missing data; Potential Outcomes; Prin-

cipal Stratification; Quantum mechanics.



1. Introduction.

We consider studies that interview cohorts of individuals after a critical event, such as injury

or stroke, with the following two characteristics. First, the studies are designed to measure

“input” variables, which describe the period before the critical event, and to characterize

the distribution of the input variables in the cohort. Second, the studies are designed to

measure “output” variables, primarily mortality after the critical event, and to characterize

the predictive (or conditional) distribution of mortality given the input variables in the cohort.

Such studies, however, are often complicated by the fact that the input data are missing for

those who die shortly after the critical event because the data collection takes place after the

event.

This problem, input data missing due to death, occurs commonly, for example, in studies of

elders (Cornoni et al., 1993; Reuben, 1995; Cohen, 2002), or victims of injuries (e.g., MacKenzie

et al., 2006). The goals we address for such studies are how to estimate the inputs missing

due to death, and how to characterize the predictive (or conditional) distribution of mortality

given the input variables in the cohort. Answers to these goals are important because, first,

they can be used to better alert the individuals and their physicians about increases in risks,

and second, they inform about the pathways of such risks.

As a motivating example, consider the National Study on the Costs and Outcomes of

Trauma Centers (NSCOT, MacKenzie et al., 2006). That study used hospital discharge records

to identify and enroll individuals who received care for injuries. The first follow-up visit was

scheduled at three months. During this visit, patients were interviewed about their pre-injury

disability, as measured by “activities of daily living (ADL)”. It is of interest to evaluate the re-

lation that prior disability has to the risk of death following an injury. However, some patients

died as a result of injury, before this first follow-up visit. Thus, the ADL values are missing for

these patients. If these missing past ADL values have a different distribution than the observed
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past ADL values among survivors, standard methods cannot estimate that relation.

Another class of examples arises in the evaluation of the effect that a periodic exposure

(e.g., to drug) has on the risk of a critical event using a case-crossover design (Maclure, 1991).

In its basic form, this design aims to measure, for each one of a group of injury cases, the gap

time between the last exposure and the critical event, and a measure of that person’s typical

frequency of past exposure. A measure of association between exposure and the critical event is

then defined by comparing the observed gap times to their distribution that would be expected

if the critical event had been unrelated to the exposure process defined by the past frequencies.

In this design, even if we know the victims’ most recent exposure to drugs (e.g., by blood

measurement), the frequency of past exposure becomes missing for those who die as a result of

severe injuries, and this missingness is usually ignored (e.g., Vinson et al., 1995). As discussed

below, such missingness needs to be addressed by new and more appropriate methods. Such

examples are summarized in Table 1.

Table 1 here.

Standard methods confronted with missing data from death, as also noted by Zhang and

Rubin (2003), can be classified into three types. The first type is concerned only with the ob-

served data (e.g., cause-specific hazards, dating to Prentice et al. 1978; and partly conditional

on being alive, Kurland and Heagerty, 2005); these methods are not relevant to our problem

because they do not attempt to estimate the missing data. The second type of method assumes

ignorability (Rubin, 1976) of missing data and essentially replaces them with data matched

from fully observed strata, either across time from the same person, or across people for the

same time (e.g., McMahon and Harrell, 2001; Lin, McCullough and Mayne, 2002) or both;

these methods are known to be inappropriate when the distribution of data missing data due

to death differs from that in observed strata (Rubin, 1978). The third type posits non-ignorable

assumptions relying simply on the parametric structure of models (e.g., Fairclough, Peterson
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and Chang, 1998); these methods are sensitive to the parametric assumptions because, with-

out such assumptions, the distributions of interest are not identifiable unless additional design

structure is introduced.

We address the problem’s goals from a combination of design and analyses perspectives.

First, we recognize that the problem is related to, but differs from, the problem of censoring

by death discussed in Rubin (2000), Frangakis and Rubin (2002), and developed by Zhang

and Rubin (2003). The goal of the latter problem is to compare treatments on potential

outcomes (Neyman 1923; Rubin, 1974, 1978) when some patients in either treatment die. In

that problem, the future outcome of a person who dies is “missing”, not because it exists and is

unobserved, but because it is not defined. Because the patients who die may not be comparable

between the two treatments, death creates the need to define meaningful treatment effects on

the outcomes. Such effects are well defined if we restrict attention to patients who would

survive no matter which treatment they would receive (Rubin, 2000) rather than to the larger

group of patients who are observed to survive. This group of patients, who would survive no

matter the treatment, is a special case of a “principal stratum” (Frangakis and Rubin, 2002),

that is, here, a stratum defined by a patient’s joint potential outcomes of death under the

two treatments. Thus, in that case, the principal strata are critical for defining treatment

effects. In the present problem, the variable of interest is a well defined input preceding death,

and is missing because the attempt to record it takes place after death. The key, from the

design perspective, then, is to recognize that the missing data of an individual who dies, would

be observed “under explicit alternative conditions for which the same individual would have

survived”. Formalizing this, we show that it is also important here for the goal of estimating

the missing information, that: (1) the design finds data on factors (e.g., treatments) that (1a)

could have prevented deaths and (1b) were assigned to the individuals after the time when the

inputs of interest became defined but before the time of death; and (2) these data be analyzed

4



using principal stratification.

In the next section, we formulate more explicitly the problem and its goals, and formalize

the proposed design with data on externally controllable factors, such as treatments, that can

prevent deaths. In Section 3, we describe a method can address our goals using the data from

the proposed design and the framework of principal stratification. We show that the proposed

method allows the distribution of missing inputs to differ systematically from the distribution

of the observed inputs, yet this method is able to estimate the distribution of the missing

inputs. In Section 4, we demonstrate using preliminary data from NSCOT including transport

time to hospital as the externally controllable factor, that our design and analysis method

can uncover results that are dramatically different and more plausible than those of standard

methods. Section 5 provides extensions of the proposed methods in more general situations.

Section 6 discusses the commonalities and differences between this and other related uses of

principal stratification. Section 7 concludes with remarks, including connections between this

new, interventional approach to missing data and the principles of quantum mechanics.

2. Design using principal stratification.

2.1 Initial design and goals.

Consider a cohort of individuals who had a critical event (at time say t = 1), such as an

injury (e.g., crash). We are interested in learning about a variable A that takes its value at

a time, say t = 0, before the critical event and so is called an input. For example, A can be

activities of daily living that the person cannot perform, or exposure to drugs. To record A,

we schedule an interview at a time, say t = 2, after the critical event, e.g., an interview at

discharge from the hospital. However, a subset of individuals die before the interview, as a

result of the critical event; for those individuals, the value of A still exists, since it occurred

before death, but becomes missing because there is no interview.
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Throughout, we use i to index an individual. Let Ai be the value of A for individuals at

t = 0; and let Sobs
i = 1 for surviving individuals at t = 2, and 0 otherwise. This initial setting

is shown in Fig. 1(a).

Goals. We wish to address the following: (a) Estimate the distribution of the past input Ai for

the people who died without reporting them; and (b) Estimate quantities such as predictive

distributions and associations that are defined based on the distribution of all values Ai, missing

and observed, for example, the prediction of death based on Ai. The first goal is important for

characterizing the distribution of the inputs for all individuals. The second goal differs from

predicting death from the observed inputs in this study, pr(Sobs
i = 0 | {Ai : Ai is observed }),

which is by definition deterministically 0 and is of no interest. Goals of type (b) are important

because they inform us about the degree to which the past inputs Ai in the original cohort are

actually related to death (or to the critical event using additional data from people without that

event). Because of the deaths, the inputs A are not all reported in this study, so these relations

need to be estimated indirectly. These relations should suggest better monitoring methods in

subsequent studies, which would alert physicians and individuals about sudden increases in the

risk of death. Also, goals (b) contribute by helping medical research understand the pathways

through which those inputs relate to critical events and death.

2.2 New design elements and principal strata.

Consider the following additional design elements:

(i) For all individuals, we find and record a factor or treatment (labeled Zi) that was assigned

externally (that is, by a person or process other than the individual), and a level of which

could have prevented death for those who died. For this factor, let z = 0 denote a

standard level, and z = 1 denote the more effective level. For example, for injuries, such

a “treatment factor” can be the transport time (long or short) from the time of injury to
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arrival at the hospital or to surgery, whereas for strokes or myocardial infarctions, such

a factor can be the prompt administration of a thrombolytic drug.

(ii) We also record covariates Xi that were used to decide the level Zi of the factor for the

individual. The variables Xi may correlate with the input Ai.

The level of factor z to which a particular individual is assigned can affect the future of

that individual, although we assume it cannot affect the future of a different individual (no

interference, Rubin, 1978; Cox, 1992). For an individual i, denote by Si(z) the potential

survival outcome (Rubin, 1978) that indicates the survival status if the individual is assigned

level z of the factor. It is then important, as in Rubin (2000), Frangakis and Rubin (2002) and

Zhang and Rubin (2003), to consider the principal strata of survival, that is, the strata of the

individuals with respect to the joint values of (Si(0), Si(1)). These are generally the following:

(1) individuals who would survive no matter the level of z, that is, Si(0) = Si(1) = 1; (2)

individuals who would die under the standard level but would live under the effective one,

that is, Si(0) = 0 and Si(1) = 1; (3) individuals who would die no matter the level, that is,

Si(0) = Si(1) = 0; and (4) individuals who would survive under the standard level but would

die under the effective treatment, that is, Si(0) = 1 and Si(1) = 0. We denote the principal

stratum of individual i by Pi and label the above four possible strata as “always survivors”,

“protectable”, “never survivors”, and “defiers”, respectively, combining terminology of Angrist,

Imbens and Rubin (1996), and Gilbert, Bosch and Hudgens (2003) for vaccines.

Our main argument is that addressing the goals (a) and (b) can be helped by recording and

using data on such a factor z (there can be more than one choice) that can justify plausible

assumptions about the assignment of Zi and about the principal strata.

Figure 1 here.
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A simple example reveals how our structure can help us achieve our goals. Consider a factor

z that can justify the following two assumptions (for extensions see Sec. 5):

Assumption 1. Ignorable assignment of external factor : The levels Zi are independent of

(Ai, Pi) conditionally on the variables Xi that were used for assignment.

Assumption 2. Preventability of deaths from external factor : Individuals are either Pi =

“protectable” by the effective level (z = 1) of the factor, or else “always survivors” .

Assumption 1 is plausible when we choose z and Xi so that conditionally on Xi the reasons

for the remaining variability of Zi are independent of the individuals’ health prior to the

critical event. For example, we can ask physicians to tell us all the variables they used to decide

assignment of a treatment z. So, the external assignment of z makes its ignorability achievable,

whereas this is not true for an assumption of “ignorability of death”, which is typically made by

the standard methods (Sec. 1). Note that, by definition, the values of Ai and Pi are not affected

by the actual treatment that is assigned (Frangakis and Rubin, 2002). The second assumption

excludes “never survivor” and “defier” patients, and is related to the monotonicity assumption

in other settings (e.g., Angrist, Imbens and Rubin, 1996). Preventability, when combined with

ignorability, is testable from the observed data, since under these assumptions we must observe

that among individuals within levels of Xi and assigned the “effective” treatment, all survive,

whereas among those assigned the standard treatment some die and some survive, as in Fig.

2(b). More generally, some notion of both, the ignorability of the controllable factor, and a

type of monotonic effect of that factor on the reason of missing outcomes (here mortality) are

critical for using this design. Nevertheless, the preventability assumption is more flexible than

it originally appears when made within levels of the covariate strata Xi. The preventability

Assumption 2 can also be relaxed to allow for “never survivors” as discussed in Section 5.1.

We now show how the above design addresses our goals.
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3. Estimability of input data missing due to death.

Distribution of missing input data.

For the observed data, we assume without loss of generality that we are already within

covariate strata Xi = x, so, for brevity we omit the explicit conditioning on Xi in the notation

of the distributions below. The possibly missing input Ai is taken as an indicator for poor

functional ability (e.g, dichotomized activities of daily living (ADL) =1 for poor status).

Consider first the goal of estimating the distribution of the missing functional inputs,

pr(Ai = 1 | Sobs
i = 0, Zi = 0). The above ignorability of the assignment of the prevention

factor levels Zi reflects that, conditionally on the variables Xi, and on which we have already

stratified, assignment of Zi balances all other covariates, including the input Ai, which is a

covariate that took its value before the prevention factor Zi was assigned, even though assign-

ment of Zi preceded the time when Ai was to be measured. In other words, because Ai is a

covariate and Zi is effectively randomized (given Xi), the proportion pr(Ai = 1 | Zi = 0) of

poor inputs among individuals assigned the standard prevention level of z equals the propor-

tion pr(Ai = 1 | Zi = 1) among those assigned the effective prevention level. Since, the former

group includes both individuals with observed and missing values, we have that:

pr(Ai = 1 | Zi = 1) = pr(Ai = 1 | Zi = 0)

=
∑

s=0,1

pr(Ai = 1 | Sobs
i = s, Zi = 0)pr(Sobs

i = s | Zi = 0). (1)

From the observed data, as Fig. 2(b) shows, we can estimate directly the proportion pr(Ai =

1 | Zi = 1) of people who had had poor function among those assigned the effective level

of z. The equality in (1) then implies that we can also estimate the proportion pr(Ai = 1 |
Zi = 0) of people who had had poor function among those assigned the standard level of z.

Moreover, Fig. 2(b) shows that we can also directly estimate from the observed data: the
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proportion pr(Sobs
i = 1 | Zi = 0) of survivors among individuals assigned the standard z;

and the proportion pr(Ai = 1 | Sobs
i = 1, Zi = 0) who had poor function among those who

survived after being assigned the standard level of factor z. It follows then, from (1), that the

distribution of missing past inputs can be expressed as

pr(Ai = 1 | Sobs
i = 0, Zi = 0)

(2)

=
pr(Ai = 1 | Zi = 1) − pr(Ai = 1 | Sobs

i = 1, Zi = 0) pr(Sobs
i = 1 | Zi = 0)

pr(Sobs
i = 0 | Zi = 0)

.

Therefore, we have reduced the unknown distribution of missing input data to an expression,

the RHS of (2), that involves quantities that can be directly estimated as discussed above.

This calculation is related to the instrumental variables equations of the effect of a treatment

on post-treatment outcomes in a trial with non-compliance (Imbens and Rubin, 1997). How-

ever, the context and goal of the problem here are different, and this parallel arises from the

more fundamental commonality of “principal stratification” shared between the two types of

problems (see Sec. 6).

Relation between input and mortality.

The ability to estimate better the missing data allows us to also examine better relations

between those data and clinical variables. As an example, we show here how we can estimate

the degree to which the input Ai predicts death. Because death depends on the principal strata

Pi and the level of the prevention factor, it is important to examine if the input Ai predicts the

principal strata of death. This would indicate that Ai predicts the underlying predisposition

of a person to die.

Specifically, we wish to estimate:

pr(Si(0) = 0 | Ai = a) =
pr(Si(0) = 0)pr(Ai = a|Si(0) = 0)

pr(Ai = a)
, (3)

10



and compare (3) with a = 0 and 1. From the top of (1), we have that pr(Ai = 1) equals

the directly estimable proportion pr(Ai = 1 | Zi = 1) under the effective prevention level.

Moreover, from ignorability of treatment assignment with respect to the principal strata, we

have that the protectable patients {i : Si(0) = 0} are balanced between the levels of z (all

probabilities are implicitly given Xi), and so pr(Si(0) = 0) in the RHS of (3) equals the

directly estimable proportion pr(Sobs
i = 0 | Zi = 0) of patients who die under the standard

prevention level, where the principal strata are observed (see Fig. 2(b)). Also by ignorability,

the proportion pr(Ai = a|Si(0) = 0) of protectable patients who have input a, involved in the

RHS of (3), is also balanced between the levels of z and so equals the proportion of patients with

input a among those who die in the standard prevention level, i.e., pr(Ai = a | Sobs
i = 0, Zi = 0),

where the latter is estimable from (2). These arguments show estimability of the proportions

in (3). Using these arguments to substitute the RHS of (3) with estimable quantities based on

(2), we can express the relative risk of being a protectable (not always survivor) patient when

having poor versus good input Ai as

pr(Si(0) = 0 | Ai = 1)
pr(Si(0) = 0 | Ai = 0)

=
pr(Ai = 0 | Zi = 1)
pr(Ai = 1 | Zi = 1)

(4)

× pr(Ai = 1 | Zi = 1) − pr(Ai = 1 | Sobs
i = 1, Zi = 0) pr(Sobs

i = 1 | Zi = 0)
pr(Sobs

i = 0 | Zi = 0) − pr(Ai = 1 | Zi = 1) + pr(Ai = 1 | Sobs
i = 1, Zi = 0) pr(Sobs

i = 1 | Zi = 0)
,

where the quantities in the RHS of equation (4) are all directly estimable as described in the

paragraph following (1).

4. Demonstration.

We return to the NSCOT study (MacKenzie et al., 2006) on injuries described in Sec. 1.

To illustrate the contrast between our approach to missing data and standard approaches, we

consider patients who have sustained injuries with a relatively low (Xi = 0) or high (Xi = 1)
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severity (n = 354, 135 respectively). The follow-up interview is scheduled three months after

the injury to measure by questionnaire the functional status (Ai = 1 for poor ADL) that

existed before injury, and this is missing if injured person i dies before the interview as a result

of the injuries. The prevention factor z we use here is based on the time it took to transport

the injured person to the hospital.

Regarding the assumption of ignorability of the assignment mechanism of the transport

time to hospital, the two main reasons for variability of this time are (a) the severity of the

injury as judged by medical personnel - more severe injuries are attempted to be transported

faster; and (b) external reasons such as time of day, distance, traffic, or weather, that prevent

fast transport, but that are themselves in principle not directly related to the person’s health

before injury. It is therefore plausible to assume ignorable assignment of Zi after conditioning

on the measured severity of injury Xi used to decide Zi: among individuals of the same

injury severity Xi (high, or low, see Table 2), those transported slowly are assumed to have

the same distributions of past ADL Ai and principal strata Pi as the individuals transported

quickly. Of course, one may wish to adjust for additional levels of covariates to remove possible

remaining confounding, for example, using the approach of Sec. 5.2, but the principles for those

analyses remain the same. The assumption that quick transportation to hospital can prevent

an important proportion of deaths is supported both by literature for other critical events

(e.g., GISSI 1986), and empirically by our data: within either of our strata (high, or low) of

injury severity Xi, there were no deaths for injuries delivered to the hospital within 10 minutes,

although there were 19% deaths for patients with a high injury severity delivered later than 10

minutes and 5% deaths for patients with a low injury severity delivered later than 10 minutes.

Based on the above, Table 2 gives relevant summary proportions, directly computed from

the data. We treat these summaries here as population proportions, because they indicate

plausible results for each method. Inferential statements were not planned for and so do not
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achieve statistical significance, since the study had not been planned to use the new design.

Table 2 here.

Focusing first on high injury severity, there were pr(Zi = 1) = 8% of patients transported

quickly; among the patients who were transported slowly, 81% survived, i.e., pr(Sobs
i = 1 |

Zi = 0)=81%; among those transported quickly, all survived, i.e., pr(Sobs
i = 1 | Zi = 1)=100%

(not shown); of those, there were 9% who had poor ADL before injury, i.e., pr(Ai = 1 |
Zi = 1)=9%; and among those who survived after being transported slowly, 5% had poor

past Ai, i.e., pr(Ai = 1 | Sobs
i = 1, Zi = 0)=5%. Then, the approach that would estimate

the protectable patients’ missing data distribution pr(Ai = 1 | Sobs
i = 0, Zi = 0) with the

distribution of observed data after matching on slow time Zi = 0 would give 5% poor function.

On the other hand, an approach that would estimate the missing data distribution with the

observed data without matching on time would give pr(Ai = 1 | Sobs
i = 1) which equals

∑
z pr(Ai = 1 | Sobs

i = 1, Zi = z)
pr(Sobs

i =1|Zi=z)pr(Zi=z)
�

z′ pr(Sobs
i =1|Zi=z′)pr(Zi=z′) , and which, using the information

given in Table 2, gives 5.4%. More generally, the result of the standard methods is bounded

to be between the directly observed pr(Ai = 1 | Sobs
i = 1, Zi = z), for z = 0, 1 (here, between

5% and 9%), as a convex combination of the two.

With the new method however, the missing proportion of poor past function for protectable

patients is allowed to be different from the observed strata. In particular, from (1), the missing

proportion pr(Ai = 1 | Sobs
i = 0, Zi = 0) must be such that when mixed with the proportion

of pr(Ai = 1 | Sobs
i = 1, Zi = 0) = 5% of poor past function for always survivors, the result

should be the proportion of pr(Ai = 1 | Zi = 0) = pr(Ai = 1 | Zi = 1) = 9% observed for

all patients transported quickly to the hospital (Fig. 1(b)). The fact that, by (1), this is a

convex mixing based on the probabilities pr(Sobs
i = s | Zi = 0), for s = 0, 1, implies that the

missing proportion pr(Ai = 1 | Sobs
i = 0, Zi = 0) of poor past function for the protectable

patients must be higher than the mixture, pr(Ai = 1 | Zi = 1) = 9%. Using (2), the missing
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proportion pr(Ai = 1 | Sobs
i = 0, Zi = 0) is {9% − (5%)(81%)}/(100% − 81%) = 26%. This

shows that the actual result can be estimable and substantially different from those of the

standard methods. Note that this proportion is in line with a hypothesis that those who died

had generally poorer past ADL than the survivors. Analogous comparisons are obtained for

injuries with low severity. Finally, the larger proportions of poor ADL for low versus high

injury severity is in accordance with the hypothesis that individuals who sustain injuries of

light severity and who, nevertheless, need hospitalization, were more frail before the injury

than individuals who get hospitalized after sustaining a severe injury.

The relative risk in (4) is implicitly assumed to equal 1 by the standard method that

replaces the missing data distribution pr(Ai = 1 | Sobs
i = 0, Zi = 0) with that of the observed

data after matching on the prevention level, that is, with pr(Ai = 1 | Sobs
i = 1, Zi = 0).

With the new method, however, and the empirical proportions of Table 2, the relative risk

in (4) is estimated to be 13.7 and 3.6, for low and high injury severity, respectively. This

means that, even after conditioning on observed strata, the possibly missing functional ability

is an important predictor of the underlying ability of a patient to survive the injury when

transportation takes a standard time to the hospital. The first implication is that follow-

up e.g., of individuals with history of poor functionality, should use new designs (e.g., based

on automated reporting devices) to make sure that some dimensions of functional ability be

measured at higher frequency. This would give better prediction for which patients transition

to high risk for death from a critical event. The second implication is that sudden changes to

low functional ability inputs should be examined physiologically to understand and ultimately

address the pathways through which these inputs predict death from injury even in the short

term.
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5. More general role of new methods.

5.1 Partial preventability.

The new methods are important also for more general input data, designs and assumptions.

A plausible prevention factor may partly, but not fully, prevent death. For example, prompt

delivery of thrombolytic drugs prevents death after stroke in some but not all cases (GISSI,

1986). More specifically for such settings, we consider an external factor z that satisfies no

interference and Assumption 1, as in Section 2.2, and a generalization of Assumption 2:

Assumption 2’. Partial preventability of deaths from external factor : Individuals are either

Pi= “never survivors”, “protectable”, or “always survivors”.

For never survivors – those who would not survive no matter the factor’s level – the obser-

vation of outcomes then remains essentially undefined just based on this factor, and so is not

estimable without further assumptions. So the goal in this setting is limited to the estimation

of the distribution of missing inputs for protectable patients under the standard level of as-

signment, which equals pr(Ai | Pi = protectable) by Assumption 1. Standard methods cannot

estimate correctly this distribution, as they cannot do so in the setting given in Sections 2 and

3. Yet we show below that this distribution is still estimable without further assumptions.

To see this, note that the distribution of observed inputs under the effective factor level, as

in Section 2.2, is still a mixture of the distribution among protectables and always survivors.

Letting p, a stand for protectables and always survivors, respectively, we then have

pr(Ai = 1 | Sobs
i = 1, Zi = 1) =

=
∑

q=p,a

pr(Ai = 1 | Pi = q, Sobs
i = 1, Zi = 1) × pr(Pi = q | Sobs

i = 1, Zi = 1)

=
∑

q=p,a

pr(Ai = 1 | Pi = q) × pr(Pi = q)/pr(Pi ∈ {p, a}) (5)
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where the last equality for the first summand arises first, because Sobs is a function of P and

Z, and then because A, P is independent of Z, by Assumption 1.

To recover the target of interest, pr(Ai = 1 | Pi = p), from (5), note that, since among the

patients assigned the effective level Zi = 1, those who survive are the protectables and always

survivors, the proportions pr(Sobs
i = 1 | Zi = 1) and pr(Pi ∈ {p, a}) are equal. Moreover, since

among those assigned the standard level, Zi = 0, those who survive are always survivors, it

follows that the proportions pr(Sobs
i = 1 | Zi = 0) and pr(Pi = a) are equal, and the distribution

of input data pr(Ai = 1 | Pi = a) equals the directly estimable distribution pr(Ai = 1 | Sobs =

1, Zi = 0). By substituting these in (5) and after some rearrangement of terms we find that

the target distribution satisfies

pr(Ai = 1 | Pi = p) =

pr(Ai = 1 | Sobs
i = 1, Zi = 1) pr(Sobs

i = 1 | Zi = 1) − pr(Ai = 1 | Sobs
i = 1, Zi = 0) pr(Sobs

i = 1 | Zi = 0)
pr(Sobs

i = 1 | Zi = 1) − pr(Sobs
i = 1 | Zi = 0)

Therefore for the subset of patients that are protectable or always survivors we can still assess

the ignorability of missingess of data, and also find the direction along which its violation occurs

(e.g., if such input data for those who died were higher on average than the observed ones).

Thus in such more general settings, the importance of the new methods is essentially intact for

addressing the scientific goals.

5.2 Modeling covariates.

Suppose we still make Assumptions 1 and 2’, but we first wish to condition on multiple, and

possibly continuous, covariates Xi, and that to do so, we model the distribution of the principal

strata of survival and of a continuous input given principal strata by parametric functions

l(P)(q, x, β(P)) :=pr(Pi = q | Xi = x, β(P)), and
(6)

l(A)(a, q, x, β(A)) :=pr(Ai = a | Pi = q, Xi = x, β(A)),

16



where the last function is defined only for q = protectable, or always survivor. Denote by

P(Zi, S
obs
i ) the set of possible principal strata as a function of the observed level Zi and survival

status Sobs
i : if Zi = 0 (standard) and Sobs = 1 (alive), then P(Zi, A

obs
i ) = {always survivor};

if Zi = 0 and Sobs = 0 (dead), then P(Zi, S
obs
i ) = {protectable, never survivor}, if Zi = 1

(effective) and Sobs = 0 (dead), then P(Zi, S
obs
i ) = {never survivor}, and if Zi = 1 and

Sobs = 1 (alive), then P(Zi, S
obs
i ) = {protectable, always survivor}. Then the likelihood of the

collection of data

Xi, Zi, S
obs
i , and Ai if Sobs

i = 1

over independent individuals, conditional on the covariates and the observed factor levels, is

Likd(β(P), β(A)) =
∏

i

∑

q∈P(Zi,Sobs
i )

l(P)(q, Xi, β
(P)) · {l(A)(Ai, q, Xi, β

(A))}Sobs
i (7)

Under this setting, we can more generally express a quantity of interest as a function Q(β(P), β(A))

of the parameters, which can then be estimated by using likelihood or Bayesian methods to

estimate the parameters from (7). Semiparametric methods, as discussed by Scharfstein, Rot-

nitzky and Robins (1999) in general, and by Gilbert et al (2003) for an application of principal

stratification to vaccine trials, are also of interest. The fact that these quantities would be

identifiable by our method even without the models in (6) if samples were large enough means

that the results should not be sensitive to the particular parametric models, as long as they

are flexible. Moreover, we can also show better estimation of general quantities of importance

in Table 1, such as for associations using case-crossover designs.

6. Related Problems.

The design and structure of principal stratification we proposed for this problem, “inputs

missing due to death”, has commonalities and also differences with the structure of two other
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problems where studies assign a treatment to examine its effect on an outcome. The first

problem, “treatment noncompliance”, deals with subjects who do not comply with the assigned

treatment, and its structure with principal strata was discussed by Imbens and Rubin (1997).

The second problem, “outcomes censored by death” (see Sec. 1), deals with subjects who die

before the intended future outcome is measured, and its structure with principal strata has

been discussed by Rubin (2000), Frangakis and Rubin (2002), Zhang and Rubin (2003), and,

with adaptation to HIV vaccines, by Gilbert et al. (2003).

The common structure across these problems is centered around a factor that can be thought

of as controllable, in the sense that its assignment is assumed ignorable. All three problems also

have factors whose values are measurable after the controllable factor is assigned, namely post-

controllable (or endogenous) factors; and factors whose values are defined (but not necessarily

measurable) before the controllable factor is assigned, namely pre-controllable factors. The

latter include all potential outcomes of the post-controllable factors, and, therefore, include

principal strata, that is, cross classifications of subjects by some subset of potential outcomes.

The three problems also have differences, in their structure, their goals, and in the role that

principal stratification plays in addressing these goals.

In the problem with “treament noncompliance”, the controllable factor is the treatment

assignment; the post-controllable factors are the observed treatment received and the outcome;

and the pre-controllable factors are the potential values of the treatment received and of the

outcome. Of particular importance is the principal stratum of “compliers”, that is, the subjects

for whom the potential values of treatment received are the same as the treatment assigned, for

all assignment levels (Imbens and Rubin, 1997). In this problem, principal stratification helps to

formulate and, under assumptions, estimate the effect of treatment assignment (or intention to

treat, ITT) on the outcome among the compliers. This goal is important because for compliers,

the experimental comparison of outcomes among the levels of the controlled assignment is also
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a comparison among the different levels of treatment received.

In the problem with “outcomes censored by death”, the controllable factor is again the

treatment assignment; the post-controllable factors are the observed survival status, and the

observed outcome if the person survives; and the pre-controllable factors are the potential values

of the survival and of the outcome. Here, a principal stratum of particular importance is that

of “always survivors”, defined as in Section 2. Principal stratification helps formulate and

estimate the effect of treatment assignment on the outcome among always survivors. This goal

is important because always survivors are the only subjects for whom potential outcomes are

well defined for all assignment levels.

In the problem with “inputs missing due to death”, the controllable factor is one that affects

survival after the critical event; the post controllable factors are the observed survival status

of the person, which determines measurement (if alive) or no measurement (if dead) of the

input that occurred before the critical event; and the pre-controllable factors are the inputs of

interest and the principal strata of survival. Here, a principal stratum of particular importance

is that of “protectables”. In this problem, principal stratification provides the framework for

appropriately positing assumptions, such as those of Section 2 or 3, that allow estimation of the

distribution of the missing inputs for protectable patients. As discussed, this goal is important

because it better characterizes the differences between observed and missing inputs, and helps

better understand the role that the inputs have for predicting mortality from the critical event.

7. Discussion.

We proposed a framework for addressing data missing due to death by obtaining and using

data and explicit assumptions about a treatment assignment mechanism that could cause

missing values to become observed if different levels of the treatment had been assigned. Thus,

although a relation between causal inference and missing data has been obvious since Neyman
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(1923) and Rubin (1974, 1976, 1978), the proposed framework for data missing due to death

emphasizes a particular order for understanding these concepts: causal inference with potential

outcomes is not just a special case of missing data, but is more fundamental than missing data

(see also Rubin, 1987; 2005). Specifically, in the framework we proposed, data can only be

regarded as having a missing value if an explicit intervention can be proposed that would

provide us with that value. This principle for missing data, therefore, follows the principle of

quantum mechanics, by which a measurable value of a physical quantity is only defined in terms

of an explicit intervention that can be applied in order to provide that value. This parallel

of principles is also reflected in the parallel of primary elements of the two frameworks – the

complex wave function in quantum mechanics, and the principal strata of potential outcomes in

the proposed framework for missing data: these primary elements give rise to the observed data

by specific rules, but the primary elements are not themselves directly observable, providing

an additional dimension that empowers the frameworks to better explain observations.

The use of an intervention factor to address missing data has the limitation that there

can be settings where such a factor can exist, but still not available in the design. This

can be so especially since such factors are not, at present systematically recorded for the

purposes of addressing missing data, because their role in this problem had not previously been

demonstrated. For such cases were the missing values are well defined but where design features

do not allow their identifiability, sensitivity analyses can be implemented (e.g., Rubin, 1977;

Manski 2003). Our results and illustration, though, demonstrate that using such intervention

factors can improve the evaluation of and utility of studies with missing data due to death,

and so can be the first step to a more systematic recording of such factors.

It will also be of interest to combine the setting discussed here, where possible deaths of

patients can imply that their unobserved past is different from pasts that are observed, with the

settings considered by Rubin (2000) and Zhang and Rubin (2003). In those settings, patients
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who die could have had also a different future outcome trajectory from observed trajectories,

under conditions that would have prevented their death. Developing methods to answer such

combined questions is important for evaluating, for example, not only the potential benefit of

prevention programs for saving lives, but also the programs’ effects on the quality of patients’

lives, and the relation of these effects to past input variables.
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Table 1: Examples of studies with input data missing due to death.

population; original goal measures of interest (time 0) critical event (time 1)

elders or sick; relate functional activities of daily living (ADL), stroke, falls,

measures to mortality intense emotional stress, myocardial infarction,

intense physical activity, opportunistic infections

youths; relate exposure measures controlled substance use injuries (e.g., crash)

to severe injury/mortality (e.g, alcohol, drug abuse)
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Figure 1.

(a): Initial design on input variable A and survival status Sobs, matched for past

covariates;

(b): New design based on a controllable factor. Dashed boxes indicate principal

strata with respect to survival. The presentational order from left to right of (prin-

cipal strata (Si(0), Si(1)) and input Ai), controllable factor Zi, and observed survival

Sobs
i , which determines measurement or no measurement of the input Ai, is also the

time order of definition from earliest to latest variable. Other covariates defined

before the controllable factor can be used as in Sec. 5.2.
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